Neuroprotection with a calpain inhibitor in a model of focal cerebral ischemia.

Author:

Hong S C1,Goto Y1,Lanzino G1,Soleau S1,Kassell N F1,Lee K S1

Affiliation:

1. Department of Neurological Surgery, University of Virginia, Charlottesville 22908.

Abstract

Excessive elevation of intracellular calcium and uncontrolled activation of calcium-sensitive events are believed to play a central role in ischemic neuronal damage. Calcium-activated proteolysis by calpain is a candidate to participate in this form of pathology because it is activated under ischemic conditions and its activation results in the degradation of crucial cytoskeletal and regulatory proteins. The present studies examined the effects of a cell-penetrating inhibitor of calpain on the pathological outcome after transient focal ischemia in the brain. Twenty-five male Sprague-Dawley rats were divided into four groups: a saline-treated group, a vehicle-treated group, and two calpain inhibitor-treated groups (Cbz-Val-Phe-H; 30-mg/kg and 60-mg/kg cumulative doses). Ischemia was induced by occluding the left middle cerebral artery and both common carotid arteries for 3 hours followed by reperfusion. Animals were killed 72 hours after surgery, and quantitative measurements of infarction volumes were performed using histological techniques. Eight additional rats were killed 30 minutes after ischemia and examined for the extent of proteolysis using immunoblot techniques. A final group of 12 animals was decapitated after injection of vehicle or calpain inhibitor, and the proteolytic response was measured after 60 minutes of total ischemia. Rats treated with Cbz-Val-Phe-H exhibited significantly smaller volumes of cerebral infarction than saline-treated or vehicle-treated control animals. Intravenous injections of cumulative doses of 30 mg/kg or 60 mg/kg of Cbz-Val-Phe-H were effective in reducing infarction, edema, and calcium-activated proteolysis. The proteolytic response to postdecapitation ischemia was also reduced by the calpain inhibitor. These results demonstrate the neuroprotective effect of a cell-penetrating calpain inhibitor when administered systemically. The findings suggest that targeting intracellular, calcium-activated mechanisms, such as proteolysis, represents a viable therapeutic strategy for limiting neurological damage after ischemia.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Advanced and Specialized Nursing,Cardiology and Cardiovascular Medicine,Neurology (clinical)

Cited by 185 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3