Conditions for pharmacologic evaluation in the gerbil model of forebrain ischemia.

Author:

Clifton G L1,Taft W C1,Blair R E1,Choi S C1,DeLorenzo R J1

Affiliation:

1. Department of Surgery, Medical College of Virginia, Virginia Commonwealth University, Richmond 23298-0677.

Abstract

We looked at FiO2, choice of anesthetic, nutritional status, and body temperature in a gerbil model of forebrain ischemia to determine their effect on data interpretation, ischemic outcome, and extent of pharmacologic protection. We subjected 484 gerbils to 5 minutes of forebrain ischemia under different experimental conditions. The gerbils were anesthetized with 3% halothane and inspired 21% O2, 37% O2 and 60% N2O, or 97% O2. Six groups of gerbils pretreated with 200 mg/kg phenytoin or 2 ml/kg polyethylene glycol (vehicle) underwent ischemia in the fasted or fed state. Three groups of gerbils receiving no pretreatment underwent ischemia with rectal temperatures of 32-33 degrees C, 34-35 degrees C, or 37 degrees C. We counted intact neurons in the CA1 hippocampal sector in brains fixed on Day 7 after ischemia. t tests of square-root-transformed cell counts were used to assess the effect of hypothermia, and analysis of variance of the transformed data was used to test for the effects of phenytoin, FiO2, and nutritional status. Phenytoin pretreatment provided significant protection from CA1 neuron loss in all groups tested (p less than 0.001), but the degree of protection varied from 20% to 44%. In spite of significantly higher serum glucose concentrations in fed than in fasted gerbils (173 and 118 mg/dl, respectively), we found no significant effect of nutritional status upon neuron loss in phenytoin- or vehicle-pretreated gerbils. An FiO2 of 21% significantly decreased the number of viable neurons in both vehicle- and phenytoin-pretreated groups (p less than 0.03), despite the lack of an effect of hypoxemia on arterial blood gases.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Advanced and Specialized Nursing,Cardiology and Cardiovascular Medicine,Neurology (clinical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3