Affiliation:
1. Department of Neurosurgery, Shinshu University, School of Medicine, Matsumoto, Japan.
Abstract
Transforming growth factor-beta 1 (TGF-beta 1) is a multifunctional polypeptide that controls the production of extracellular matrix protein. Platelets store a large quantity of TGF-beta 1, which is released at hemorrhage. We recently reported that human recombinant TGF-beta 1 induced communicating hydrocephalus in mice. The aim of this study was to determine whether TGF-beta 1 is related to the development of communicating hydrocephalus after subarachnoid hemorrhage (SAH).
TGF-beta 1 in the cerebrospinal fluid of 24 patients with SAH was measured with enzyme-linked immunosorbent assay. The levels were compared between hydrocephalic and nonhydrocephalic groups. Western blot analysis was performed to determine active TGF-beta 1 in the cerebrospinal fluid.
TGF-beta 1 rapidly decreased from the onset of SAH. The level of TGF-beta 1 of 13 patients showing ventricular dilatation with periventricular low density on computed tomographic scan was 1.07 +/- 0.37 ng/mL on days 12 through 14, which was significantly higher than 0.52 +/- 0.21 ng/mL in patients without ventricular dilatation (P < .02). Furthermore, the TGF-beta 1 level of patients who had undergone ventriculoperitoneal shunt (n = 11) was 1.11 +/- 0.09 ng/mL on days 12 through 14, which was also higher than the level of the nonshunt group (n = 13) (0.56 +/- 0.22 ng/mL; P < .01). A 25-kD band was demonstrated by Western blot analysis in the cerebrospinal fluid of a patient with SAH.
Our results strongly suggest that TGF-beta 1 plays an important role in generating communicating hydrocephalus after SAH.
Publisher
Ovid Technologies (Wolters Kluwer Health)
Subject
Advanced and Specialised Nursing,Cardiology and Cardiovascular Medicine,Clinical Neurology
Cited by
99 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献