Blood flow and vascular permeability during motor dysfunction in a rabbit model of spinal cord ischemia.

Author:

Jacobs T P1,Kempski O1,McKinley D1,Dutka A J1,Hallenbeck J M1,Feuerstein G1

Affiliation:

1. National Institutes of Health, Bethesda, Md.

Abstract

Delayed deterioration of neurological function after central nervous system ischemia is a well-documented clinical problem. The purpose of our study was to elucidate the role of spinal cord blood flow and spinal cord-blood barrier integrity in the evolution of delayed neurological deterioration after transient spinal cord ischemia in rabbits. Anesthetized rabbits were subjected to lumbar spinal cord ischemia (25 minutes) and variable periods of reperfusion (30 minutes to 48 hours after ischemia). Regional spinal cord blood flow was monitored by carbon-14-labeled iodoantipyrine autoradiography; vascular permeability was assessed by quantitative microhistofluorescence of Evans blue-albumin in frozen sections of spinal cord. Hindlimb motor function was assessed by standard scoring system and tissue edema by wet/dry weight method. Hindlimb motor function indicated complete paralysis during ischemia and partial gradual recovery upon reperfusion (up to 8 hours), followed by progressive deterioration to severe deficits over 48 hours. Severe vascular permeability disruption was noticed early (30 minutes) after reperfusion, but almost complete recovery reestablished at 8 hours was followed by a secondary progressive increase in vascular permeability. Blood flow was reduced by 20-30% (p less than 0.01) 4 hours after ischemia in the gray matter, but hyperemia (200-300%, p less than 0.01) was observed 12-24 hours after ischemia. Spinal cord water content increased by 5.7% (p less than 0.05) 24 hours after ischemia. This study demonstrates that delayed neurological and motor deterioration after spinal cord ischemia is associated with severe progressive breakdown of spinal cord-blood barrier integrity that develops late (hours) after the injury. Our data suggest that no ischemic insult in early or late reperfusion is associated with delayed motor deterioration.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Advanced and Specialized Nursing,Cardiology and Cardiovascular Medicine,Neurology (clinical)

Reference29 articles.

1. Hachinski VC Norris JW: The deteriorating stroke in Meyer JS (ed): Cerebral Vascular Disease 3. Amsterdam Excerpta Medica 1980

2. Price TR: Progressing ischemic stroke in Barnett HJM Stein BM Mohr JP Yatsu FM (eds): Stroke: Pathophysiology Diagnosis and Management. New York Churchill Livingstone Inc 1986 pp 1059-1068

3. Experimental cerebral ischemia in Mongolian gerbils

4. Fujimoto T Walker JT Spatz M Klatzo I: Pathophysiologic aspects of ischemic edema in Pappius HM Feindel W (eds): Dynamics of Brain Edema. Berlin/Heidelberg/New York Springer 1971 pp 171-192

Cited by 79 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3