Dexamethasone prevents cerebral infarction without affecting cerebral blood flow in neonatal rats.

Author:

Tuor U I1,Simone C S1,Barks J D1,Post M1

Affiliation:

1. Department of Pediatrics, University of Toronto, Canada.

Abstract

We recently demonstrated that pretreatment with the synthetic glucocorticoid dexamethasone prevents hypoxic-ischemic brain damage in neonatal rats. Presently, we examine whether this protective effect of dexamethasone is due to an improvement in local cerebral blood flow. Neonatal rats were treated with either vehicle or 0.1 mg/kg i.p. dexamethasone 24 hours before hypoxia-ischemia (right carotid artery occlusion +3 hours of 8% O2). Cerebral blood flow was measured with [14C]iodoantipyrine autoradiography after either 2 (n = 17) or 3 (n = 15) hours of hypoxia-ischemia. Additional animals (n = 20) were perfusion-fixed 3 days after hypoxia-ischemia. The area of cerebral pathological changes was measured from hematoxylin and eosin-stained coronal sections taken at three different levels. Pathological outcome differed between groups. In vehicle-treated rats, sections from anterior, mid, and posterior portions of the cerebrum all had extensive infarction or cellular necrosis ipsilateral to the occlusion (mean areas of damage were 62.6 +/- 10%, 70.2 +/- 9%, and 54.2 +/- 8%, respectively). However, in dexamethasone-treated animals, brain damage in sections at corresponding levels was minimal (0%, 1.6 +/- 2%, and 1.5 +/- 1%, respectively; p < 0.0002). In contrast to the pathological results, cerebral blood flow was equivalent in the dexamethasone- and vehicle-treated groups. After either 2 or 3 hours of hypoxia, cerebral blood flow was reduced 60-80% ipsilateral to the carotid artery occlusion in animals treated with either vehicle or dexamethasone. Despite ischemic levels of cerebral blood flow, pretreatment with dexamethasone prevents cerebral damage in neonatal rats. Instead of improving local cerebral perfusion, dexamethasone presumably acts via peripheral or central glucocorticoid receptors to produce some alteration in the brain that decreases its susceptibility to hypoxia-ischemia.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Advanced and Specialised Nursing,Cardiology and Cardiovascular Medicine,Clinical Neurology

Cited by 62 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. General Considerations for Neurointerventional Procedures;Handbook of Cerebrovascular Disease and Neurointerventional Technique;2023

2. MicroRNA-210 downregulates TET2 and contributes to inflammatory response in neonatal hypoxic-ischemic brain injury;Journal of Neuroinflammation;2021-01-05

3. Nanomedicine for Ischemic Stroke;International Journal of Molecular Sciences;2020-10-14

4. General Considerations for Neurointerventional Procedures;Handbook of Cerebrovascular Disease and Neurointerventional Technique;2018

5. Neonatal hypoxia-ischemia in rat increases doublecortin concentration in the cerebrospinal fluid;European Journal of Neuroscience;2017-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3