Histamine elicits competing endothelium-dependent constriction and endothelium-independent dilation in vivo in mouse cerebral arterioles.

Author:

Rosenblum W I1,Nelson G H1,Weinbrecht P1

Affiliation:

1. Department of Pathology (Neuropathology), Medical College of Virginia-Virginia Commonwealth University, Richmond 23298-0017.

Abstract

We used television microscopy and an image-splitting technique to monitor the changes in diameter produced by histamine applied locally to mouse pial arterioles in vivo. A high dose (50 micrograms/ml, 3 X 10(-4) M) of histamine constricted the arterioles, whereas lower doses (20 and 10 micrograms/ml) relaxed them. Constriction was blocked and dilation occurred when selective injury of the endothelium was produced by light from a helium-neon laser in the presence of intravascular Evans blue. From this we conclude that the constriction was endothelium-dependent and was caused by the release of an endothelium-derived constricting factor. Constriction was also blocked by each of two antagonists of the H1 histamine receptor and by pretreatment of the arterioles with indomethacin. H1 blockade unmasked a dilating action of 1 micrograms/ml histamine, a dose too low to affect the diameter of arterioles not treated with the H1 blocker. An H2 blocker interfered with the relaxation by low-dose (10 micrograms/ml, 6 X 10(-5) M) histamine. These data indicate that for mouse pial arterioles, histamine can interact with H1 receptors on the endothelium to release an endothelium-derived constricting factor that causes constriction of the underlying muscle while simultaneously interacting with H2 receptors in the muscle that mediate relaxation of the vessel.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Advanced and Specialised Nursing,Cardiology and Cardiovascular Medicine,Clinical Neurology

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3