Feasibility of Contrast-Enhanced and Nonenhanced MRI for Intraprocedural and Postprocedural Lesion Visualization in Interventional Electrophysiology

Author:

Nordbeck Peter1,Hiller Karl-Heinz1,Fidler Florian1,Warmuth Marcus1,Burkard Natalie1,Nahrendorf Matthias1,Jakob Peter M.1,Quick Harald H.1,Ertl Georg1,Bauer Wolfgang R.1,Ritter Oliver1

Affiliation:

1. From the Department of Internal Medicine I–Cardiology, University Hospital Würzburg, Würzburg, Germany (P.N., N.B., G.E., W.R.B., O.R.); the Department of Experimental Physics V, Julius-Maximilians-University, Würzburg, Germany (P.N., M.W., P.M.J.); Research Center Magnetic-Resonance–Bavaria, Würzburg, Germany (K.-H.H., F.F.); the Center for Systems Biology, Harvard Medical School, Boston, MA (M.N.); and the Institute for Medical Physics, University Erlangen-Nürnberg, Erlangen, Germany (H.H.Q.).

Abstract

Background— Imaging of myocardial ablation lesions during electrophysiology procedures would enable superior guidance of interventions and immediate identification of potential complications. The aim of this study was to establish clinically suitable MRI-based imaging techniques for intraprocedural lesion visualization in interventional electrophysiology. Methods and Results— Interventional electrophysiology was performed under magnetic resonance guidance in an animal model, using a custom setup including magnetic resonance–conditional catheters. Various pulse sequences were explored for intraprocedural lesion visualization after radiofrequency ablation. The developed visualization techniques were then used to investigate lesion formation in patients immediately after ablation of atrial flutter. The animal studies in 9 minipigs showed that gadolinium-DTPA–enhanced T1-weighted and nonenhanced T2-weighted pulse sequences are particularly suitable for lesion visualization immediately after radiofrequency ablation. MRI-derived lesion size correlated well with autopsy ( R 2 =0.799/0.709 for contrast-enhanced/nonenhanced imaging). Non–contrast agent–enhanced techniques were suitable for repetitive lesion visualization during electrophysiological interventions, thus allowing for intraprocedural monitoring of ablation success. The patient studies in 24 patients with typical atrial flutter several minutes to hours after cavotricuspid isthmus ablation confirmed the results from the animal experiments. Therapeutic lesions could be visualized in all patients using contrast-enhanced and also nonenhanced MRI with high contrast-to-noise ratio (94.6±35.2/111.1±32.6 versus 48.0±29.0/68.0±37.3 for ventricular/atrial lesions and contrast-enhanced versus nonenhanced imaging). Conclusions— MRI allows for precise lesion visualization in electrophysiological interventions just minutes after radiofrequency ablation. Nonenhanced T2-weighted MRI is particularly feasible for intraprocedural delineation of lesion formation as lesions are detectable within minutes after radiofrequency delivery and imaging can be repeated during interventions.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Radiology Nuclear Medicine and imaging

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3