Rhodamine-Loaded Intercellular Adhesion Molecule–1-targeted Microbubbles for Dual-Modality Imaging Under Controlled Shear Stresses

Author:

Wu Zhuojun1,Curaj Adelina1,Fokong Stanley1,Liehn Elisa A.1,Weber Christian1,Lammers Twan1,Kiessling Fabian1,Zandvoort van Marc1

Affiliation:

1. From the Department of Experimental Molecular Imaging (Z.W., A.C., S.F., T.L., F.K.), Institute for Molecular Cardiovascular Research (Z.W., A.C., E.A.L., M.v.Z.), University Clinic, RWTH-Aachen University, Aachen, Germany; Department of Targeted Therapeutics, University of Twente, Enschede, The Netherlands (T.L.); Department of Genetics and Cell Biology, Section Molecular Cell Biology, School for Cardiovascular Diseases CARIM, Maastricht University, Maastricht, The Netherlands (M.v.Z.); and...

Abstract

Background— The ability to image incipient atherosclerosis is based on the early events taking place at the endothelial level. We hypothesized that the expression of intercellular adhesion molecule-1 even in vessels with high flow rates can be imaged at the molecular level using 2 complementary imaging techniques: 2-photon laser scanning microscopy and contrast-enhanced ultrasound. Methods and Results— Using 2-photon laser scanning microscopy and contrast-enhanced ultrasound, intercellular adhesion molecule-1–targeted and rhodamine-loaded microbubbles were shown to be specifically bound to tumor necrosis factor-α–stimulated human umbilical vein endothelial cells and murine carotid arteries (44 wild-type mice) at shear stresses ranging from 1.25 to 120 dyn/cm 2 . Intercellular adhesion molecule-1–targeted and rhodamine-loaded microbubbles bound 8× more efficient ( P =0.016) to stimulated human umbilical vein endothelial cells than to unstimulated cells and 14× more than nontargeted microbubbles ( P =0.016). In excised carotids, binding efficiency did not decrease significantly when increasing the flow rate from 0.25 to 0.6 mL/min. Higher flow rates (0.8 and 1 mL/min) showed significantly reduced microbubbles retention, by 38% ( P =0.03) and 55% ( P =0.03), respectively. Ex vivo results were translatable in vivo, confirming that intercellular adhesion molecule-1–targeted and rhodamine-loaded microbubbles are able to bind specifically to the inflamed carotid artery endothelia under physiological flow conditions and to be noninvasively detected using contrast-enhanced ultrasound. Conclusions— Our data provide groundwork for the implementation of molecular ultrasound imaging in vessels with high shear stress and flow rates, as well as for the future development of image-guided therapeutic interventions, and multiphoton microscopy as the appropriate method of validation.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Radiology, Nuclear Medicine and imaging

Reference42 articles.

1. Atherosclerosis: current pathogenesis and therapeutic options

2. Novel Immune Signals and Atherosclerosis

3. Implantation of a carotid cuff for triggering shear-stress induced atherosclerosis in mice.;Kuhlmann MT;J Vis Exp,2012

4. Imaging Atherosclerosis and Vulnerable Plaque

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3