Machine Learning and Bias in Medical Imaging: Opportunities and Challenges

Author:

Vrudhula Amey12ORCID,Kwan Alan C.2ORCID,Ouyang David23ORCID,Cheng Susan2ORCID

Affiliation:

1. Icahn School of Medicine at Mount Sinai, New York (A.V.).

2. Department of Cardiology, Smidt Heart Institute (A.V., A.C.K., D.O., S.C.), Cedars-Sinai Medical Center.

3. Division of Artificial Intelligence in Medicine, Department of Medicine (D.O.), Cedars-Sinai Medical Center.

Abstract

Bias in health care has been well documented and results in disparate and worsened outcomes for at-risk groups. Medical imaging plays a critical role in facilitating patient diagnoses but involves multiple sources of bias including factors related to access to imaging modalities, acquisition of images, and assessment (ie, interpretation) of imaging data. Machine learning (ML) applied to diagnostic imaging has demonstrated the potential to improve the quality of imaging-based diagnosis and the precision of measuring imaging-based traits. Algorithms can leverage subtle information not visible to the human eye to detect underdiagnosed conditions or derive new disease phenotypes by linking imaging features with clinical outcomes, all while mitigating cognitive bias in interpretation. Importantly, however, the application of ML to diagnostic imaging has the potential to either reduce or propagate bias. Understanding the potential gain as well as the potential risks requires an understanding of how and what ML models learn. Common risks of propagating bias can arise from unbalanced training, suboptimal architecture design or selection, and uneven application of models. Notwithstanding these risks, ML may yet be applied to improve gain from imaging across all 3A’s (access, acquisition, and assessment) for all patients. In this review, we present a framework for understanding the balance of opportunities and challenges for minimizing bias in medical imaging, how ML may improve current approaches to imaging, and what specific design considerations should be made as part of efforts to maximize the quality of health care for all.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3