Rapid 3D Phenotyping of Cardiovascular Development in Mouse Embryos by Micro-CT With Iodine Staining

Author:

Degenhardt Karl1,Wright Alexander C.1,Horng Debra1,Padmanabhan Arun1,Epstein Jonathan A.1

Affiliation:

1. From the Department of Cell and Developmental Biology (K.D., A.P., J.A.E.), Penn Cardiovascular Institute, and the Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, Pa; the Laboratory for Structural NMR Imaging (A.C.W., D.H.), Department of Radiology, University of Pennsylvania Medical Center, Philadelphia, Pa; and the Department of Pediatrics (K.D.), Division of Cardiology, Children’s Hospital of Philadelphia, Philadelphia, Pa.

Abstract

Background— Microcomputed tomography (micro-CT) has been used extensively in research to generate high-resolution 3D images of calcified tissues in small animals nondestructively. It has been especially useful for the characterization of skeletal mutations but limited in its utility for the analysis of soft tissue such as the cardiovascular system. Visualization of the cardiovascular system has been largely restricted to structures that can be filled with radiopaque intravascular contrast agents in adult animals. Recent ex vivo studies using osmium tetroxide, iodinated contrast agents, inorganic iodine, and phosphotungstic acid have demonstrated the ability to stain soft tissues differentially, allowing for high intertissue contrast in micro-CT images. In the present study, we demonstrate the application of this technology for visualization of cardiovascular structures in developing mouse embryos using Lugol solution (aqueous potassium iodide plus iodine). Methods and Results— We show the optimization of this method to obtain ex vivo micro-CT images of embryonic and neonatal mice with excellent soft-tissue contrast. We demonstrate the utility of this method to visualize key structures during cardiovascular development at various stages of embryogenesis. Our method benefits from the ease of sample preparation, low toxicity, and low cost. Furthermore, we show how multiple cardiac defects can be demonstrated by micro-CT in a single specimen with a known genetic lesion. Indeed, a previously undescribed cardiac venous abnormality is revealed in a PlexinD1 mutant mouse. Conclusions— Micro-CT of iodine-stained tissue is a valuable technique for the characterization of cardiovascular development and defects in mouse models of congenital heart disease.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Radiology, Nuclear Medicine and imaging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3