Molecular Mechanisms of Adenosine Stress T1 Mapping

Author:

Shah Soham A.1ORCID,Reagan Claire E.2ORCID,French Brent A.123ORCID,Epstein Frederick H.123ORCID

Affiliation:

1. Department of Biomedical Engineering (S.A.S., C.E.R., B.A.F., F.H.E.), University of Virginia, Charlottesville, VA.

2. Department of Radiology (B.A.F., F.H.E.), University of Virginia, Charlottesville, VA.

3. The Robert M. Berne Cardiovascular Research Center (B.A.F., F.H.E.), University of Virginia, Charlottesville, VA.

Abstract

Background: Adenosine stress T1 mapping is an emerging magnetic resonance imaging method to investigate coronary vascular function and myocardial ischemia without application of a contrast agent. Using gene-modified mice and 2 vasodilators, we elucidated and compared the mechanisms of adenosine myocardial perfusion imaging and adenosine T1 mapping. Methods: Wild-type (WT), A 2A AR −/− (adenosine A 2A receptor knockout), A 2B AR −/− (adenosine A 2B receptor knockout), A 3 AR −/− (adenosine A 3 receptor knockout), and eNOS −/− (endothelial nitric oxide synthase knockout) mice underwent rest and stress perfusion magnetic resonance imaging (n=8) and T1 mapping (n=10) using either adenosine, regadenoson (a selective A 2A AR agonist), or saline. Myocardial blood flow and T1 were computed from perfusion imaging and T1 mapping, respectively, at rest and stress to assess myocardial perfusion reserve and T1 reactivity (ΔT1). Changes in heart rate for each stress agent were also calculated. Two-way ANOVA was used to detect differences in each parameter between the different groups of mice. Results: Myocardial perfusion reserve was significantly reduced only in A 2A AR −/− compared to WT mice using adenosine (1.06±0.16 versus 2.03±0.52, P <0.05) and regadenoson (0.98±026 versus 2.13±0.75, P <0.05). In contrast, adenosine ΔT1 was reduced compared with WT mice (3.88±1.58) in both A 2A AR −/− (1.63±1.32, P <0.05) and A 2B AR −/− (1.55±1.35, P <0.05). Furthermore, adenosine ΔT1 was halved in eNOS −/− (1.76±1.46, P <0.05) versus WT mice. Regadenoson ΔT1 was approximately half of adenosine ΔT1 in WT mice (1.97±1.50, P <0.05), and additionally, it was significantly reduced in eNOS −/− mice (−0.22±1.46, P <0.05). Lastly, changes in heart rate was 2× greater using regadenoson versus adenosine in all groups except A 2A AR −/− , where heart rate remained constant. Conclusions: The major findings are that (1) although adenosine myocardial perfusion reserve is mediated through the A 2A receptor, adenosine ΔT1 is mediated through the A 2A and A 2B receptors, (2) adenosine myocardial perfusion reserve is endothelial independent while adenosine ΔT1 is partially endothelial dependent, and (3) ΔT1 mediated through the A 2A receptor is endothelial dependent while ΔT1 mediated through the A 2B receptor is endothelial independent.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Radiology Nuclear Medicine and imaging

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3