AIP1 Mediates Vascular Endothelial Cell Growth Factor Receptor-3–Dependent Angiogenic and Lymphangiogenic Responses

Author:

Zhou Huanjiao Jenny1,Chen Xiaodong1,Huang Qunhua1,Liu Renjing1,Zhang Haifeng1,Wang Yingdi1,Jin Yu1,Liang Xiaoling1,Lu Lin1,Xu Zhe1,Min Wang1

Affiliation:

1. From the Interdepartmental Program in Vascular Biology and Therapeutics, Yale University School of Medicine, New Haven, CT (H.J.Z., X.C., Q.H., H.Z., Y.W., Y.J., W.M.); State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China (H.J.Z., X.C., X.L., L.L.); Diseases of the Aorta Lab, Center for the Endothelium, Vascular Biology Program, Centenary Institute and University of Sydney, Sydney, Australia (R.L.); Department of Ophthalmology, Guangzhou...

Abstract

Objective— To investigate the novel function of ASK1-interacting protein-1 (AIP1) in vascular endothelial cell growth factor receptor (VEGFR)-3 signaling, and VEGFR-3–dependent angiogenesis and lymphangiogenesis. Approach and Results— AIP1, a signaling scaffold protein, is highly expressed in the vascular endothelium. We have previously reported that AIP1 functions as an endogenous inhibitor in pathological angiogenesis by blocking VEGFR-2 activity. Surprisingly, here we observe that mice with a global deletion of AIP1-knockout mice (AIP1-KO) exhibit reduced retinal angiogenesis with less sprouting and fewer branches. Vascular endothelial cell (but not neuronal)–specific deletion of AIP1 causes similar defects in retinal angiogenesis. The reduced retinal angiogenesis correlates with reduced expression in VEGFR-3 despite increased VEGFR-2 levels in AIP1-KO retinas. Consistent with the reduced expression of VEGFR-3, AIP1-KO show delayed developmental lymphangiogenesis in neonatal skin and mesentery, and mount weaker VEGF-C–induced cornea lymphangiogenesis. In vitro, human lymphatic endothelial cells with AIP1 small interfering RNA knockdown, retinal endothelial cells, and lymphatic endothelial cells isolated from AIP1-KO all show attenuated VEGF-C–induced VEGFR-3 signaling. Mechanistically, we demonstrate that AIP1 via vegfr-3 –specific miR-1236 increases VEGFR-3 protein expression and that, by directly binding to VEGFR-3, it enhances VEGFR-3 endocytosis and stability. Conclusion— Our in vivo and in vitro results provide the first insight into the mechanism by which AIP1 mediates VEGFR-3–dependent angiogenic and lymphangiogenic signaling.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3