Cell Therapy Based on Adipose Tissue-Derived Stromal Cells Promotes Physiological and Pathological Wound Healing

Author:

Ebrahimian T.G.1,Pouzoulet F.1,Squiban C.1,Buard V.1,André M.1,Cousin B.1,Gourmelon P.1,Benderitter M.1,Casteilla L.1,Tamarat R.1

Affiliation:

1. From the Institut de Radioprotection et de Surete Nucleaire IRSN, Service de Radiobiologie d'Epidemiologie (T.G.E, F.P., C.S., V.B., M.B., R.T.), Direction de la Radioprotection de l'Homme, Laboratoire de RadioPathologie, Fontenay-aux-Roses Cedex, France; and UMR 5241 CNRS UPS, IFR31 (M.A., B.C., L.C.), Toulouse, France.

Abstract

Objective— We hypothesized that adipose tissue may contain progenitors cells with cutaneous and angiogenic potential. Methods and Results— Adipose tissue-derived stroma cells (ADSCs) were administrated to skin punched wounds of both nonirradiated and irradiated mice (20 Gy, locally). At day14, ADSCs promoted dermal wound healing and enhanced wound closure, viscolesticity, and collagen tissue secretion in both irradiated and nonirradiated mice. Interestingly, GFP-positive ADSCs incorporated in dermal and epidermal tissue in vivo and expressed epidermal markers K5 and K14. Cultured ADSCs in keratinocyte medium have been shown to differentiate into K5- and K14-positive cells and produced high levels of KGF. At Day 7, ADSCs also improved skin blood perfusion assessed by laser Doppler imaging, capillary density, and VEGF plasma levels in both irradiated and nonirradiated animals. GFP-positive ADSCs incorporated into capillary structures in vivo and expressed the endothelial cell marker CD31. Finally, in situ interphase fluorescence hybridization showed that a small number of ADSCs have the potential to fuse with endogenous keratinocytes. Conclusion— ADSCs participate in dermal wound healing in physiological and pathological conditions by their ability to promote reepithelialization and angiogenesis. Hence, adipose lineage cells represent a new cell source for therapeutic dermal wound healing.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3