Saturated Fatty Acids Undergo Intracellular Crystallization and Activate the NLRP3 Inflammasome in Macrophages

Author:

Karasawa Tadayoshi1,Kawashima Akira1,Usui-Kawanishi Fumitake1,Watanabe Sachiko1,Kimura Hiroaki1,Kamata Ryo1,Shirasuna Koumei1,Koyama Yutaro1,Sato-Tomita Ayana1,Matsuzaka Takashi1,Tomoda Hiroshi1,Park Sam-Yong1,Shibayama Naoya1,Shimano Hitoshi1,Kasahara Tadashi1,Takahashi Masafumi1

Affiliation:

1. From the Division of Inflammation Research, Center for Molecular Medicine (T. Karasawa, A.K., F.U.-K., S.W., H.K., R.K., K.S., Y.K., T. Kasahara, M.T.) and Division of Biophysics, Department of Physiology (A.S.-T., N.S.), Jichi Medical University, Tochigi, Japan; Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Ibaraki, Japan (T.M., H.S.); Graduate School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan (H.T.); and Drug Design...

Abstract

Objective— Inflammation provoked by the imbalance of fatty acid composition, such as excess saturated fatty acids (SFAs), is implicated in the development of metabolic diseases. Recent investigations suggest the possible role of the NLRP3 (nucleotide-binding oligomerization domain, leucine-rich repeat and pyrin domain containing 3) inflammasome, which regulates IL-1β (interleukin 1β) release and leads to inflammation, in this process. Therefore, we investigated the underlying mechanism by which SFAs trigger NLRP3 inflammasome activation. Approach and Results— The treatment with SFAs, such as palmitic acid and stearic acid, promoted IL-1β release in murine primary macrophages while treatment with oleic acid inhibited SFA-induced IL-1β release in a dose-dependent manner. Analyses using polarized light microscopy revealed that intracellular crystallization was provoked in SFA-treated macrophages. As well as IL-1β release, the intracellular crystallization and lysosomal dysfunction were inhibited in the presence of oleic acid. These results suggest that SFAs activate NLRP3 inflammasome through intracellular crystallization. Indeed, SFA-derived crystals activated NLRP3 inflammasome and subsequent IL-1β release via lysosomal dysfunction. Excess SFAs also induced crystallization and IL-1β release in vivo. Furthermore, SFA-derived crystals provoked acute inflammation, which was impaired in IL-1β–deficient mice. Conclusions— These findings demonstrate that excess SFAs cause intracellular crystallization and subsequent lysosomal dysfunction, leading to the activation of the NLRP3 inflammasome, and provide novel insights into the pathogenesis of metabolic diseases.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3