Vascular Smooth Muscle Cell Plasticity and Autophagy in Dissecting Aortic Aneurysms

Author:

Clément Marc1,Chappell Joel1,Raffort Juliette12,Lareyre Fabien13,Vandestienne Marie4,Taylor Annabel L.1,Finigan Alison1,Harrison James1,Bennett Martin R.1,Bruneval Patrick4,Taleb Soraya4,Jørgensen Helle F.1,Mallat Ziad14

Affiliation:

1. From the Division of Cardiovascular Medicine, University of Cambridge, United Kingdom (M.C., J.C., J.R., F.L., A.L.T., A.F., J.H., M.R.B., H.F.J., Z.M.)

2. Clinical Chemistry Laboratory (J.R.), University Hospital of Nice, and Université Côte d’Azur, France.

3. Department of Vascular Surgery (F.L.), University Hospital of Nice, and Université Côte d’Azur, France.

4. Institut National de la Santé et de la Recherche Médicale, Universite Paris-Descartes, Paris Cardiovascular Research Center, and Université Paris-Descartes, Paris, France (M.V., P.B., S.T., Z.M.)

Abstract

Objective— Recent studies suggested the occurrence of phenotypic switching of vascular smooth muscle cells (VSMCs) during the development of aortic aneurysm (AA). However, lineage-tracing studies are still lacking, and the behavior of VSMCs during the formation of dissecting AA is poorly understood. Approach and Results— We used multicolor lineage tracing of VSMCs to track their fate after injury in murine models of Ang II (angiotensin II)–induced dissecting AA. We also addressed the direct impact of autophagy on the response of VSMCs to AA dissection. Finally, we studied the relevance of these processes to human AAs. Here, we show that a subset of medial VSMCs undergoes clonal expansion and that VSMC outgrowths are observed in the adventitia and borders of the false channel during Ang II–induced development of dissecting AA. The clonally expanded VSMCs undergo phenotypic switching with downregulation of VSMC differentiation markers and upregulation of phagocytic markers, indicative of functional changes. In particular, autophagy and endoplasmic reticulum stress responses are activated in the injured VSMCs. Loss of autophagy in VSMCs through deletion of autophagy protein 5 gene ( Atg5 ) increases the susceptibility of VSMCs to death, enhances endoplasmic reticulum stress activation, and promotes IRE (inositol-requiring enzyme) 1α-dependent VSMC inflammation. These alterations culminate in increased severity of aortic disease and higher incidence of fatal AA dissection in mice with VSMC-restricted deletion of Atg5 . We also report increased expression of autophagy and endoplasmic reticulum stress markers in VSMCs of human dissecting AAs. Conclusions— VSMCs undergo clonal expansion and phenotypic switching in Ang II–induced dissecting AAs in mice. We also identify a critical role for autophagy in regulating VSMC death and endoplasmic reticulum stress–dependent inflammation with important consequences for aortic wall homeostasis and repair.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3