Single-Cell RNA-Sequencing and Metabolomics Analyses Reveal the Contribution of Perivascular Adipose Tissue Stem Cells to Vascular Remodeling

Author:

Gu Wenduo1,Nowak Witold N.1,Xie Yao1,Le Bras Alexandra1,Hu Yanhua1,Deng Jiacheng1,Issa Bhaloo Shirin1,Lu Yao2,Yuan Hong2,Fidanis Efthymios3,Saxena Alka3,Kanno Tokuwa4,Mason A. James4,Dulak Jozef5,Cai Jingjing2,Xu Qingbo1

Affiliation:

1. From the School of Cardiovascular Medicine and Sciences, King’s College London, BHF Centre, United Kingdom (W.G., W.N.N., Y.X., A.L.B., Y.H., J. Deng, S.I.B., Q.X.)

2. Center of Clinical Pharmacology, Department of Cardiology, Third Xiangya Hospital, Central South University, Changsha, China (Y.L., H.Y., J.C.)

3. Genomics Research Platform, Biomedical Research Centre at Guy’s Hospital, London, United Kingdom (E.F., A.S.)

4. Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Science, King’s College London, Franklin-Wilkins Building, London, United Kingdom (T.K., A.J.M.)

5. Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland (J. Dulak).

Abstract

Objective: Perivascular adipose tissue (PVAT) plays a vital role in maintaining vascular homeostasis. However, most studies ascribed the function of PVAT in vascular remodeling to adipokines secreted by the perivascular adipocytes. Whether mesenchymal stem cells exist in PVAT and play a role in vascular regeneration remain unknown. Approach and Results: Single-cell RNA-sequencing allowed direct visualization of the heterogeneous PVAT-derived mesenchymal stem cells (PV-ADSCs) at a high resolution and revealed 2 distinct subpopulations, among which one featured signaling pathways crucial for smooth muscle differentiation. Pseudotime analysis of cultured PV-ADSCs unraveled their smooth muscle differentiation trajectory. Transplantation of cultured PV-ADSCs in mouse vein graft model suggested the contribution of PV-ADSCs to vascular remodeling through smooth muscle differentiation. Mechanistically, treatment with TGF-β1 (transforming growth factor β1) and transfection of microRNA (miR)-378a-3p mimics induced a similar metabolic reprogramming of PV-ADSCs, including upregulated mitochondrial potential and altered lipid levels, such as increased cholesterol and promoted smooth muscle differentiation. Conclusions: Single-cell RNA-sequencing allows direct visualization of PV-ADSC heterogeneity at a single-cell level and uncovers 2 subpopulations with distinct signature genes and signaling pathways. The function of PVAT in vascular regeneration is partly attributed to PV-ADSCs and their differentiation towards smooth muscle lineage. Mechanistic study presents miR-378a-3p which is a potent regulator of metabolic reprogramming as a potential therapeutic target for vascular regeneration.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3