TF/FVIIa Transactivate PDGFRβ to Regulate PDGF-BB–Induced Chemotaxis in Different Cell Types

Author:

Siegbahn Agneta1,Johnell Matilda1,Nordin Anna1,Åberg Mikael1,Velling Teet1

Affiliation:

1. From the Department of Medical Sciences, Clinical Chemistry, Uppsala University, Sweden.

Abstract

Background— We have previously reported the potentiation of PDGF-BB–induced chemotaxis of fibroblasts, vascular smooth muscle cells, and endothelial cells by FVIIa. Here we studied the role of TF/FVIIa and the induced signaling pathways in regulation of chemotaxis of human monocytes, fibroblasts, and porcine aorta endothelial cells. Methods and Results— Human monocytes were obtained by using Ficoll-Paque gradient and the MACS system (for highly purified population), fibroblasts and PAE cells have been characterized previously. Inhibitors of selected signaling intermediates were used, and the effect of TF/FVIIa on the migratory response of all cells to chemotactic agents was analyzed. The induced signaling was studied by immunoprecipitation and Western blotting. TF/FVIIa complex selectively enhanced PDGF-BB–induced chemotaxis in a Src-family, PLC, and PAR-2–dependent manner. Using PAE cells we identified c-Src and c-Yes as the Src-family members activated by TF/FVIIa. We report for the first time the PAR-2 and Src family-dependent transactivation of PDGFRβ by TF/FVIIa involving phosphorylation of a subset of PDGFRβ tyrosines. Conclusions— The described transactivation is a likely mechanism of TF/FVIIa-mediated regulation of PDGF-BB–induced chemotaxis. Similar behavior of 3 principally different cell types in our experimental setup may reflect a general function of TF in regulation of cell migration.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3