High-Density Lipoprotein–Associated Apolipoprotein M Limits Endothelial Inflammation by Delivering Sphingosine-1-Phosphate to the Sphingosine-1-Phosphate Receptor 1

Author:

Ruiz Mario1,Frej Cecilia1,Holmér Andreas1,Guo Li J.1,Tran Sinh1,Dahlbäck Björn1

Affiliation:

1. From the Department of Translational Medicine, Skåne University Hospital, Lund University, Malmö, Sweden.

Abstract

Objective— Plasma high-density lipoproteins (HDL) are potent antiatherogenic and anti-inflammatory particles. However, HDL particles are highly heterogenic in composition, and different HDL-mediated functions can be ascribed to different subclasses of HDL. Only a small HDL population contains apolipoprotein M (ApoM), which is the main plasma carrier of the bioactive lipid mediator sphingosine-1-phosphate (S1P). Vascular inflammation is modulated by S1P, but both pro- and anti-inflammatory roles have been ascribed to S1P. The goal of this study is to elucidate the role of ApoM and S1P in endothelial anti-inflammatory events related to HDL. Approach and Results— Aortic or brain human primary endothelial cells were challenged with tumor necrosis factor-α (TNF-α) as inflammatory stimuli. The presence of recombinant ApoM-bound S1P or ApoM-containing HDL reduced the abundance of adhesion molecules in the cell surface, whereas ApoM and ApoM-lacking HDL did not. Specifically, ApoM-bound S1P decreased vascular adhesion molecule-1 (VCAM-1) and E-selectin surface abundance but not intercellular adhesion molecule-1. Albumin, which is an alternative S1P carrier, was less efficient in inhibiting VCAM-1 than ApoM-bound S1P. The activation of the S1P receptor 1 was sufficient and required to promote anti-inflammation. Moreover, ApoM-bound S1P induced the rearrangement of the expression of S1P-related genes to counteract TNF-α. Functionally, HDL/ApoM/S1P limited monocyte adhesion to the endothelium and maintained endothelial barrier integrity under inflammatory conditions. Conclusions— ApoM-bound S1P is a key component of HDL and is responsible for several HDL-associated protective functions in the endothelium, including regulation of adhesion molecule abundance, leukocyte-endothelial adhesion, and endothelial barrier.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

Cited by 120 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3