Intronic CArG Box Regulates Cysteine-Rich Protein 2 Expression in the Adult but Not in Developing Vasculature

Author:

Chen Chung-Huang1,Wu Meng-Ling1,Lee Yi-Chung1,Layne Matthew D.1,Yet Shaw-Fang1

Affiliation:

1. From Institute of Cellular and System Medicine (C.-H.C., M.-L.W., S.-F.Y.), National Health Research Institutes, Zhunan, Taiwan; College of Life Sciences (C.-H.C.), National Tsing Hua University, Hsinchu, Taiwan; Department of Neurology (Y.-C.L.), National Yang-Ming University School of Medicine, Taipei, Taiwan; Department of Biochemistry (M.D.L.), Boston University School of Medicine, Boston, Mass.

Abstract

Objective— An absence of cysteine-rich protein 2 (CRP2) enhances vascular smooth muscle cell (VSMC) migration and increases neointima formation after arterial injury; therefore, CRP2 plays an important role in the response to vascular injury. The goal of the present study was to elucidate the molecular mechanisms that preserve CRP2 expression in the adult vasculature and thus might serve to inhibit the response to injury. Methods and Results— We generated a series of transgenic mice harboring potential Csrp2 regulatory regions with a lacZ reporter. We determined that the 12-kb first intron was necessary for transgene activity in adult but not in developing vasculature. Within the intron we identified a 6.3-kb region that contains 2 CArG boxes. Serum response factor preferentially bound to CArG2 box in gel mobility shift and chromatin immunoprecipitation assays; additionally, serum response factor coactivator myocardin factors activated CRP2 expression via the CArG2 box. Mutational analysis revealed that CArG2 box was important in directing lacZ expression in VSMC of adult vessels. Conclusion— Although CRP2 expression during development is independent of CArG box regulatory sites, CRP2 expression in adult VSMC requires CArG2 element within the first intron. Our results suggest that distinct mechanisms regulate CRP2 expression in VSMC that are controlled by separate embryonic and adult regulatory modules.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3