MEF2B-Nox1 Signaling Is Critical for Stretch-Induced Phenotypic Modulation of Vascular Smooth Muscle Cells

Author:

Rodríguez Andrés I.1,Csányi Gábor1,Ranayhossaini Daniel J.1,Feck Douglas M.1,Blose Kory J.1,Assatourian Lillian1,Vorp David A.1,Pagano Patrick J.1

Affiliation:

1. From the Department of Pharmacology and Chemical Biology and Vascular Medicine Institute (A.I.R., G.C., D.J.R, D.M.F., L.A., P.J.P), and Departments of Bioengineering, Surgery, and Cardiothoracic Surgery and Center for Vascular Remodeling and Regeneration (K.J.B., D.A.V), University of Pittsburgh, PA; and Department of Basic Sciences, Faculty of Science, Universidad del Bío-Bío, Chillán, Chile (A.I.R).

Abstract

Objective— Blood vessel hemodynamics have profound influences on function and structure of vascular cells. One of the main mechanical forces influencing vascular smooth muscle cells (VSMC) is cyclic stretch (CS). Increased CS stimulates reactive oxygen species (ROS) production in VSMC, leading to their dedifferentiation, yet the mechanisms involved are poorly understood. This study was designed to test the hypothesis that pathological CS stimulates NADPH oxidase isoform 1 (Nox1)–derived ROS via MEF2B, leading to VSMC dysfunction via a switch from a contractile to a synthetic phenotype. Approach and Results— Using a newly developed isoform-specific Nox1 inhibitor and gene silencing technology, we demonstrate that a novel pathway, including MEF2B-Nox1-ROS, is upregulated under pathological stretch conditions, and this pathway promotes a VSMC phenotypic switch from a contractile to a synthetic phenotype. We observed that CS (10% at 1 Hz) mimicking systemic hypertension in humans increased Nox1 mRNA, protein levels, and enzymatic activity in a time-dependent manner, and this upregulation was mediated by MEF2B. Furthermore, we show that stretch-induced Nox1-derived ROS upregulated a specific marker for synthetic phenotype (osteopontin), whereas it downregulated classical markers for contractile phenotype (calponin1 and smoothelin B). In addition, our data demonstrated that stretch-induced Nox1 activation decreases actin fiber density and augments matrix metalloproteinase 9 activity, VSMC migration, and vectorial alignment. Conclusions— These results suggest that CS initiates a signal through MEF2B that potentiates Nox1-mediated ROS production and causes VSMC to switch to a synthetic phenotype. The data also characterize a new Nox1 inhibitor as a potential therapy for treatment of vascular dysfunction in hypertension.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3