MYOSLID Is a Novel Serum Response Factor–Dependent Long Noncoding RNA That Amplifies the Vascular Smooth Muscle Differentiation Program

Author:

Zhao Jinjing1,Zhang Wei1,Lin Mingyan1,Wu Wen1,Jiang Pengtao1,Tou Emiley1,Xue Min1,Richards Angelene1,Jourd’heuil David1,Asif Arif1,Zheng Deyou1,Singer Harold A.1,Miano Joseph M.1,Long Xiaochun1

Affiliation:

1. From the Department of Molecular and Cellular Physiology (J.Z., W.Z., W.W., E.T., M.X., A.R., D.J., H.A.S., X.L.), Albany Medical College, NY; Department of Medicine, Jersey Shore University Medical Center, Neptune, NJ (A.A.); Departments of Genetics (M.L., D.Z.) and Neurology and Neuroscience (D.Z.), Albert Einstein College of Medicine, Bronx, NY; Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, NY (P.J., J.M.M.); and National Aquafeed Safety...

Abstract

Objective— Long noncoding RNAs (lncRNA) represent a growing class of noncoding genes with diverse cellular functions. We previously reported on SENCR , an lncRNA that seems to support the vascular smooth muscle cell (VSMC) contractile phenotype. However, information about the VSMC-specific lncRNAs regulated by myocardin (MYOCD)/serum response factor, the master switch for VSMC differentiation, is unknown. Approach and Results— To define novel lncRNAs with functions related to VSMC differentiation, we performed RNA sequencing in human coronary artery SMCs that overexpress MYOCD. Several novel lncRNAs showed altered expression with MYOCD overexpression and one, named MYOcardin-induced Smooth muscle LncRNA, Inducer of Differentiation ( MYOSLID ), was activated by MYOCD and selectively expressed in VSMCs. MYOSLID was a direct transcriptional target of both MYOCD/serum response factor and transforming growth factor-β/SMAD pathways. Functional studies revealed that MYOSLID promotes VSMC differentiation and inhibits VSMC proliferation. MYOSLID showed reduced expression in failed human arteriovenous fistula samples compared with healthy veins. Although MYOSLID did not affect gene expression of transcription factors, such as serum response factor and MYOCD, its depletion in VSMCs disrupted actin stress fiber formation and blocked nuclear translocation of MYOCD-related transcription factor A (MKL1). Finally, loss of MYOSLID abrogated transforming growth factor-β1–induced SMAD2 phosphorylation. Conclusions— We have demonstrated that MYOSLID , the first human VSMC-selective and serum response factor/CArG-dependent lncRNA, is a novel modulator in amplifying the VSMC differentiation program, likely through feed-forward actions of both MKL1 and transforming growth factor-β/SMAD pathways.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

Cited by 95 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3