Macrophage-Enriched lncRNA RAPIA

Author:

Sun Changbin1,Fu Yahong1,Gu Xia2,Xi Xiangwen1,Peng Xiang1,Wang Chuhan3,Sun Qi4,Wang Xueyu1,Qian Fengcui5,Qin Zhifeng1,Qu Wenbo1,Piao Minghui1,Zhong Shan1,Liu Shengliang1,Zhang Maomao1,Fang Shaohong1,Tian Jiangtian1,Li Chunquan5,Maegdefessel Lars6,Tian Jinwei1,Yu Bo1

Affiliation:

1. From the Department of Cardiology, Second Affiliated Hospital of Harbin Medical University, Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin, China (C.S., Y.F., X.X., X.P., X.W., Z.Q., W.Q., M.P., S.Z., S.L., M.Z., S.F., Jiangtian Tian, Jinwei Tian, B.Y.)

2. Department of Cardiology, Heilongjiang Provincial Hospital, Harbin, China (X.G.)

3. Department of Pathology, Harbin Medical University, China (C.W.)

4. Key Laboratory of Heilongjiang Province for Cancer Prevention and Control, Mudanjiang Medical University, China (Q.S.)

5. School of Medical Informatics, Daqing Campus, Harbin Medical University, China (F.Q., C.L.)

6. Department of Vascular and Endovascular Surgery, Technical University Munich, Germany (L.M.).

Abstract

Objective: Despite the current antiatherosclerotic and antithrombotic therapies, the incidence of advanced atherosclerosis-associated clinical events remains high. Whether long noncoding RNAs (lncRNAs) affect the progression of atherosclerosis and whether they are potential targets for the treatment of advanced atherosclerosis are poorly understood. Approach and Results: The progression of atherosclerotic lesions was accompanied by dynamic alterations in lncRNA expression, as revealed by RNA sequencing and quantitative polymerase chain reaction. Among the dynamically changing lncRNAs, we identified a novel lncRNA, lncRNA Associated with the Progression and Intervention of Atherosclerosis (RAPIA), that was highly expressed in advanced atherosclerotic lesions and in macrophages. Inhibition of RAPIA in vivo not only repressed the progression of atherosclerosis but also exerted atheroprotective effects similar to those of atorvastatin on advanced atherosclerotic plaques that had already formed. In vitro assays demonstrated that RAPIA promoted proliferation and reduced apoptosis of macrophages. A molecular sponge interaction between RAPIA and microRNA-183-5p was demonstrated by dual-luciferase reporter and RNA immunoprecipitation assays. Rescue assays indicated that RAPIA functioned at least in part by targeting the microRNA-183-5p/ITGB1 (integrin β1) pathway in macrophages. In addition, the transcription factor FoxO1 (forkhead box O1) could bind to the RAPIA promoter region and facilitate the expression of RAPIA. Conclusions: The progression of atherosclerotic lesions was accompanied by dynamic changes in the expression of lncRNAs. Inhibition of the pivotal lncRNA RAPIA may be a novel preventive and therapeutic strategy for advanced atherosclerosis, especially in patients resistant or intolerant to statins.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3