Bone Gla Protein Increases HIF-1α–Dependent Glucose Metabolism and Induces Cartilage and Vascular Calcification

Author:

Idelevich Anna1,Rais Yoach1,Monsonego-Ornan Efrat1

Affiliation:

1. From the Institute of Biochemistry (A.I., Y.R., E.M.O.), Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, the Hebrew University of Jerusalem, Israel.

Abstract

Objective—Bone Gla Protein (BGP, osteocalcin) is commonly present in the calcified vasculature and was recently shown as energy metabolism-regulating hormone. This study investigates the role of BGP in cartilage and vasculature mineralization.Methods and Results—We established an in vitro BGP-overexpression model in chondrocytes (ATDC5) and vascular smooth muscle cells (MOVAS). BGP overexpression upregulated markers of chondrogenic differentiation and intensified staining for minerals. BGP overexpression enhanced glucose uptake and increased expression of glucose transporters and glycolysis enzymes while decreasing gluconeogenesis enzymes. Treatment with purified BGP activated insulin signaling pathway and upregulated genes of glucose transport and utilization. Both BGP overexpression and treatment with purified BGP resulted in stabilization of hypoxia-inducible factor 1α (HIF-1α) in chondrocytes and vascular smooth muscle cells, shown essential in mediating the direct metabolic effect of BGP. The in vivo model of 1,25(OH)2D3-induced vascular calcification in rats revealed a correlation between calcification, elevated BGP levels, and increased HIF-1α expression in aortas and bone growth plates. The in vivo introduction of BGP siRNA, coadministered with 1,25(OH)2D3, prevented 1,25(OH)2D3-induced HIF-1α stabilization, and diminished osteochondrogenic differentiation and mineralization of aortas.Conclusion—This study demonstrates novel mechanism by which BGP locally shifts cells toward glycolytic breakdown of glucose, in a HIF-1α–dependent manner, and stimulates calcification of cartilage and vasculature.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

Cited by 112 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3