Heme Oxygenase-1 in Macrophages Impairs the Perfusion Recovery After Hindlimb Ischemia by Suppressing Autolysosome-Dependent Degradation of NLRP3

Author:

Ma Yuankun1,Jia Liangliang1,Wang Yidong1,Ji Yongli1,Chen Jian1,Ma Hong1ORCID,Lin Xiaoping1,Zhang Yuhao1,Li Wudi1,Ni Hui1,Xie Lan1,Xie Yao1,Xiang Meixiang1ORCID

Affiliation:

1. Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.

Abstract

Objective: Macrophage-mediated inflammatory response is closely associated with the neovascularization process following hindlimb ischemia. We previously demonstrated that HO-1 (heme oxygenase-1) in macrophages evoked proinflammatory reactions and tissue damage. Here, we evaluated the role played by macrophage-derived HO-1 and elucidated its underlying molecular mechanisms in perfusion recovery after hindlimb ischemia. Approach and Results: We found significant upregulation of HO-1 in mouse ischemic muscles after hindlimb ischemia surgery and with most of this expression occurring in infiltrated macrophages. Myeloid conditional HO-1-deficient mice exhibited higher perfusion recovery, evidenced by restored blood flow, motor function and attenuated tissue damage as well as increased capillary density in the gastrocnemius muscles after hindlimb ischemia, relative to littermate controls. This protective effect was accompanied by reduced NLRP3 (Nod-like receptor family pyrin domain containing 3) inflammasome activation in the infiltrated macrophages without the alteration of macrophage infiltration and polarization. Moreover, suppressing inflammasome activation with NLRP3 inhibitor MCC950 improved blood flow and capillary density in wild-type mice compared with untreated mice. Mechanistically, suppressing HO-1 abolished TNF (tumor necrosis factor)-α-induced NLRP3 protein rather than mRNA expression in bone marrow–derived macrophages, indicating that HO-1 mediated post-transcriptional regulation of NLRP3. Furthermore, HO-1 inhibition promoted autolysosome-dependent degradation of NLRP3 in bone marrow–derived macrophages. Matrigel tube formation assay revealed that HO-1 deletion abrogated the antiangiogenic effect of inflammasome-activated macrophages. Conclusions: Taken together, these findings indicate that macrophage HO-1 deficiency promotes perfusion recovery after hindlimb ischemia by accelerating autolysosomal degradation of NLRP3. The underlying mechanism of action is a potential target for therapeutic angiogenesis in ischemic diseases.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3