Polymerase δ-Interacting Protein 2 Promotes Postischemic Neovascularization of the Mouse Hindlimb

Author:

Amanso Angélica M.1,Lassègue Bernard1,Joseph Giji1,Landázuri Natalia1,Long James S.1,Weiss Daiana1,Taylor W. Robert1,Griendling Kathy K.1

Affiliation:

1. From the Department of Medicine, Division of Cardiology (A.M.A., B.L., G.J., J.S.L., D.W., W.R.T., K.K.G.) and The Wallace H. Coulter Department of Biomedical Engineering (W.R.T.), Emory University, Atlanta, GA; and Department of Medicine, Division of Cardiology, Atlanta VA Medical Center, GA (W.R.T.).

Abstract

Objective— Collateral vessel formation can functionally compensate for obstructive vascular lesions in patients with atherosclerosis. Neovascularization processes are triggered by fluid shear stress, hypoxia, growth factors, chemokines, proteases, and inflammation, as well as reactive oxygen species, in response to ischemia. Polymerase δ-interacting protein 2 (Poldip2) is a multifunctional protein that regulates focal adhesion turnover and vascular smooth muscle cell migration and modifies extracellular matrix composition. We, therefore, tested the hypothesis that loss of Poldip2 impairs collateral formation. Approach and Results— The mouse hindlimb ischemia model has been used to understand mechanisms involved in postnatal blood vessel formation. Poldip2 +/− mice were subjected to femoral artery excision, and functional and morphological analysis of blood vessel formation was performed after injury. Heterozygous deletion of Poldip2 decreased the blood flow recovery and spontaneous running activity at 21 days after injury. H 2 O 2 production, as well as the activity of matrix metalloproteinases-2 and -9, was reduced in these animals compared with Poldip2 +/+ mice. Infiltration of macrophages in the peri-injury muscle was also decreased; however, macrophage phenotype was similar between genotypes. In addition, the formation of capillaries and arterioles was impaired, as was angiogenesis, in agreement with a decrease in proliferation observed in endothelial cells treated with small interfering RNA against Poldip2. Finally, regression of newly formed vessels and apoptosis was more pronounced in Poldip2 +/− mice. Conclusions— Together, these results suggest that Poldip2 promotes ischemia-induced collateral vessel formation via multiple mechanisms that likely involve reactive oxygen species–dependent activation of matrix metalloproteinase activity, as well as enhanced vascular cell growth and survival.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3