Vascular Smooth Muscle Cell Subpopulations and Neointimal Formation in Mouse Models of Elastin Insufficiency

Author:

Lin Chien-Jung12ORCID,Hunkins Bridget M.1ORCID,Roth Robyn A.1,Lin Chieh-Yu3ORCID,Wagenseil Jessica E.4ORCID,Mecham Robert P.1ORCID

Affiliation:

1. Department of Cell Biology and Physiology (C.-J.L., B.M.H., R.A.R., R.P.M.), Washington University School of Medicine, St Louis, MO.

2. Cardiovascular Division, Department of Medicine (C.-J.L.), Washington University School of Medicine, St Louis, MO.

3. Department of Pathology and Immunology (C.-Y.L.), Washington University School of Medicine, St Louis, MO.

4. Mechanical Engineering and Materials Science (J.E.W.), Washington University School of Medicine, St Louis, MO.

Abstract

Objective: Using a mouse model of Eln (elastin) insufficiency that spontaneously develops neointima in the ascending aorta, we sought to understand the origin and phenotypic heterogeneity of smooth muscle cells (SMCs) contributing to intimal hyperplasia. We were also interested in exploring how vascular cells adapt to the absence of Eln. Approach and Results: We used single-cell sequencing together with lineage-specific cell labeling to identify neointimal cell populations in a noninjury, genetic model of neointimal formation. Inactivating Eln production in vascular SMCs results in rapid intimal hyperplasia around breaks in the ascending aorta’s internal elastic lamina. Using lineage-specific Cre drivers to both lineage mark and inactivate Eln expression in the secondary heart field and neural crest aortic SMCs, we found that cells with a secondary heart field lineage are significant contributors to neointima formation. We also identified a small population of secondary heart field-derived SMCs underneath and adjacent to the internal elastic lamina. Within the neointima of SMC-Eln knockout mice, 2 unique SMC populations were identified that are transcriptionally different from other SMCs. While these cells had a distinct gene signature, they expressed several genes identified in other studies of neointimal lesions, suggesting that some mechanisms underlying neointima formation in Eln insufficiency are shared with adult vessel injury models. Conclusions: These results highlight the unique developmental origin and transcriptional signature of cells contributing to neointima in the ascending aorta. Our findings also show that the absence of Eln, or changes in elastic fiber integrity, influences the SMC biological niche in ways that lead to altered cell phenotypes.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3