Transition From Obesity to Metabolic Syndrome Is Associated With Altered Myocardial Autophagy and Apoptosis

Author:

Li Zi-Lun1,Woollard John R.1,Ebrahimi Behzad1,Crane John A.1,Jordan Kyra L.1,Lerman Amir1,Wang Shen-Ming1,Lerman Lilach O.1

Affiliation:

1. From the Division of Nephrology and Hypertension (Z.-L.L., J.R.W., B.E., J.A.C., K.L.J., L.O.L.), Mayo Clinic, Rochester, MN; Division of Vascular Surgery (Z.-L.L., S.-M.W.), the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Division of Cardiovascular Diseases (A.L., L.O.L.), Mayo Clinic, Rochester, MN.

Abstract

Objective— Transition from obesity to metabolic-syndrome (MetS) promotes cardiovascular diseases, but the underlying cardiac pathophysiological mechanisms are incompletely understood. We tested the hypothesis that development of insulin resistance and MetS is associated with impaired myocardial cellular turnover. Methods and Results— MetS-prone Ossabaw pigs were randomized to 10 weeks of standard chow (lean) or to 10 (obese) or 14 (MetS) weeks of atherogenic diet (n=6 each). Cardiac structure, function, and myocardial oxygenation were assessed by multidetector computed-tomography and Blood Oxygen Level-Dependent–MRI, the microcirculation with microcomputed-tomography, and injury mechanisms by immunoblotting and histology. Both obese and MetS showed obesity and dyslipidemia, whereas only MetS showed insulin resistance. Cardiac output and myocardial perfusion increased only in MetS, yet Blood Oxygen Level-Dependent–MRI showed hypoxia. Inflammation, oxidative stress, mitochondrial dysfunction, and fibrosis also increased in both obese and MetS, but more pronouncedly in MetS. Furthermore, autophagy in MetS was decreased and accompanied by marked apoptosis. Conclusion— Development of insulin resistance characterizing a transition from obesity to MetS is associated with progressive changes of myocardial autophagy, apoptosis, inflammation, mitochondrial dysfunction, and fibrosis. Restoring myocardial cellular turnover may represent a novel therapeutic target for preserving myocardial structure and function in obesity and MetS.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3