Ccl2 and Ccl3 Mediate Neutrophil Recruitment via Induction of Protein Synthesis and Generation of Lipid Mediators

Author:

Reichel Christoph Andreas1,Rehberg Markus1,Lerchenberger Max1,Berberich Nina1,Bihari Peter1,Khandoga Alexander Georg1,Zahler Stefan1,Krombach Fritz1

Affiliation:

1. From the Walter Brendel Centre of Experimental Medicine (C.A.R., M.R., M.L., P.B., A.G.K., F.K.), Munich, and the Department of Pharmacy, Pharmaceutical Biology (N.B., S.Z.), Munich, Ludwig-Maximilians-Universität München, Germany.

Abstract

Objective— Although the chemokines monocyte chemoattractant protein-1 (Ccl2/JE/MCP-1) and macrophage inflammatory protein-1α (Ccl3/MIP-1α) have recently been implicated in neutrophil migration, the underlying mechanisms remain largely unclear. Methods and Results— Stimulation of the mouse cremaster muscle with Ccl2/JE/MCP-1 or Ccl3/MIP-1α induced a significant increase in numbers of firmly adherent and transmigrated leukocytes (>70% neutrophils) as observed by in vivo microscopy. This increase was significantly attenuated in mice receiving an inhibitor of RNA transcription (actinomycin D) or antagonists of platelet activating factor (PAF; BN 52021) and leukotrienes (MK-886; AA-861). In contrast, leukocyte responses elicited by PAF and leukotriene-B 4 (LTB 4 ) themselves were not affected by actinomycin D, BN 52021, MK-886, or AA-861. Conversely, PAF and LTB 4 , but not Ccl2/JE/MCP-1 and Ccl3/MIP-1α, directly activated neutrophils as indicated by shedding of CD62L and marked upregulation of CD11b. Moreover, Ccl2/JE/MCP-1- and Ccl3/MIP-1α-elicited leakage of fluorescein isothiocyanate dextran as well as collagen IV remodeling within the venular basement membrane were completely absent in neutrophil-depleted mice. Conclusions— Ccl2/JE/MCP-1 and Ccl3/MIP-1α mediate firm adherence and (subsequent) transmigration of neutrophils via protein synthesis and secondary generation of leukotrienes and PAF, which in turn directly activate neutrophils. Thereby, neutrophils facilitate basement membrane remodeling and promote microvascular leakage.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3