Sirolimus-FKBP12.6 Impairs Endothelial Barrier Function Through Protein Kinase C-α Activation and Disruption of the p120–Vascular Endothelial Cadherin Interaction

Author:

Habib Anwer1,Karmali Vinit1,Polavarapu Rohini1,Akahori Hirokuni1,Cheng Qi1,Pachura Kim1,Kolodgie Frank D.1,Finn Aloke V.1

Affiliation:

1. From the Department of Medicine, Emory University School of Medicine, Atlanta, GA (A.H., V.K., R.P., H.A., K.P., A.V.F.); and CV Path Institute, Inc, Gaithersburg, MD (Q.C., F.D.K.).

Abstract

Objective— Sirolimus (SRL) is an immunosuppressant drug used to prevent rejection in organ transplantation and neointimal hyperplasia when delivered from drug-eluting stents. Major side effects of SRL include edema and local collection of intimal lipid deposits at drug-eluting stent sites, suggesting that SRL impairs endothelial barrier function (EBF). The aim of this study was to address the role of SRL on impaired EBF and the potential mechanisms involved. Approach and Results— Cultured human aortic endothelial cells (HAECs) and intact human and mouse endothelium was examined to determine the effect of SRL, which binds FKBP12.6 to inhibit the mammalian target of rapamycin, on EBF. EBF, measured by transendothelial electrical resistance, was impaired in HAECs when treated with SRL or small interfering RNA for FKBP12.6 and reversed when pretreated with ryanodine, a stabilizer of ryanodine receptor 2 intracellular calcium release channels. Intracellular calcium increased in HAECs treated with SRL and normalized with ryanodine pretreatment. SRL-treated HAECs demonstrated increases in protein kinase C-α phosphorylation, a calcium sensitive serine/threonine kinase important in vascular endothelial (VE) cadherin barrier function through its interaction with p120-catenin (p120). Immunostaining of HAECs, human coronary and mouse aortic endothelium treated with SRL showed disruption of p120–VE cadherin interaction treated with SRL. SRL impairment of HAEC EBF was reduced with protein kinase C-α small interfering RNA. Mice treated with SRL demonstrated increased vascular permeability by Evans blue albumin extravasation in the lungs, heart, and aorta. Conclusions— SRL-FKBP12.6 impairs EBF by activation of protein kinase C-α and downstream disruption of the p120–VE cadherin interaction in vascular endothelium. These data suggest this mechanism may be an important contributor of SRL side effects related to impaired EBF.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

Cited by 51 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3