Development of a Magnetic Resonance Imaging Protocol for the Characterization of Atherosclerotic Plaque by Using Vascular Cell Adhesion Molecule-1 and Apoptosis-Targeted Ultrasmall Superparamagnetic Iron Oxide Derivatives

Author:

Burtea Carmen1,Ballet Sébastien1,Laurent Sophie1,Rousseaux Olivier1,Dencausse Anne1,Gonzalez Walter1,Port Marc1,Corot Claire1,Elst Luce Vander1,Muller Robert N.1

Affiliation:

1. From the Department of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons, Mons, Belgium (C.B., S.L., L.V.E., R.N.M.); and Biological Research (S.B., A.D., W.G.), Chemical Discovery (O.R., M.P.), Research Director (C.C.), Guerbet, Research Center, Aulnay-sous-Bois, France.

Abstract

Objective— Acute ischemic events are often caused by the disruption of lipid-rich plaques, which are frequently not angiographically visible. Vascular cell adhesion molecule-1 and apoptotic cell-targeted peptides studied during our previous work were conjugated to ultrasmall superparamagnetic iron oxide (USPIO) (USPIO-R832 for vascular cell adhesion molecule-1 targeting; USPIO-R826 for apoptosis targeting) and assessed by magnetic resonance imaging. Methods and Results— Apolipoprotein E knockout mice were injected with 0.1 mmol Fe/kg body weight and were imaged on a 4.7-T Bruker magnetic resonance imaging until 24 hours after contrast agent administration. Aortic samples were then harvested and examined by histochemistry, and the magnetic resonance images and histological micrographs were analyzed with ImageJ software. The plaques enhanced by USPIO-R832 contained macrophages concentrated in the cap and a large necrotic core, whereas USPIO-R826 produced a negative enhancement of plaques rich in macrophages and neutral fats concentrated inside the plaque. Both USPIO derivatives colocalized with their target on histological sections and were able to detect plaques with a vulnerable morphology, but each one is detecting a specific environment. Conclusion— Our vascular cell adhesion molecule-1 and apoptotic cell targeted USPIO derivatives seem to be highly promising tools for atherosclerosis imaging contributing to the detection of vulnerable plaques. They are able to attain their target in low doses and as fast as 30 minutes after administration.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

Cited by 74 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3