Proangiogenic Properties of Thrombospondin-4

Author:

Muppala Santoshi1,Frolova Ella1,Xiao Roy1,Krukovets Irene1,Yoon Suzy1,Hoppe George1,Vasanji Amit1,Plow Edward1,Stenina-Adognravi Olga1

Affiliation:

1. From the Department of Molecular Cardiology (S.M., E.F., R.X., I.K., E.P., O.S.-A.), and Cole Eye Institute (S.Y., G.H.), Cleveland Clinic, OH; and ImageIQ Inc, Cleveland, OH (A.V.).

Abstract

Objective— Thrombospondin-4 (TSP-4) is 1 of the 5 members of the thrombospondin protein family. TSP-1 and TSP-2 are potent antiangiogenic proteins. However, angiogenic properties of the 3 other TSPs, which do not contain the domains associated with the antiangiogeneic activity of TSP-1 and TSP-2, have not been explored. In our previous studies, we found that TSP-4 is expressed in the vascular matrix of blood vessels of various sizes and is especially abundant in capillaries. We sought to identify the function of TSP-4 in the regulation of angiogenesis. Approach and Results— The effect of TSP-4 in in vivo angiogenesis models and its effect on angiogenesis-related properties in cultured cells were assessed using Thbs4 −/− mice, endothelial cells (EC) derived from these mice, and recombinant TSP-4. Angiogenesis was decreased in Thbs4 −/− mice compared with wild-type mice. TSP-4 was detected in the lumen of the growing blood vessels. Mice expressing the P387 TSP-4 variant, which was previously associated with coronary artery disease and found to be more active in its cellular interactions, displayed greater angiogenesis compared with A387 form. Lung EC from Thbs4 −/− mice exhibited decreased adhesion, migration, and proliferation capacities compared with EC from wild-type mice. Recombinant TSP-4 promoted proliferation and the migration of EC. Integrin α 2 and gabapentin receptor α 2 δ-1 were identified as receptors involved in regulation of EC adhesion, migration, and proliferation by TSP-4. Conclusion— TSP-4, an extracellular matrix protein previously associated with tissue remodeling, is now demonstrated to possess proangiogenic activity.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

Cited by 54 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3