Role of Adipose Tissue Endothelial ADAM17 in Age-Related Coronary Microvascular Dysfunction

Author:

Dou Huijuan1,Feher Attila1,Davila Alec C.1,Romero Maritza J.1,Patel Vijay S.1,Kamath Vinayak M.1,Gooz Monika Beck1,Rudic R. Daniel1,Lucas Rudolf1,Fulton David J.1,Weintraub Neal L.1,Bagi Zsolt1

Affiliation:

1. From the Vascular Biology Center (H.D., A.F., A.C.D., M.J.R., R.L., D.J.F., N.L.W., Z.B.), Department of Surgery (V.S.P., V.M.K.), Department of Medicine (N.L.W., Z.B.), and Department of Pharmacology and Toxicology (M.J.R., R.D.R., R.L., D.J.F.), Medical College of Georgia, Augusta University; and Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston (M.B.G.).

Abstract

Objective— A disintegrin and metalloproteinase ADAM17 (tumor necrosis factor-α [TNF]–converting enzyme) regulates soluble TNF levels. We tested the hypothesis that aging-induced activation in adipose tissue (AT)-expressed ADAM17 contributes to the development of remote coronary microvascular dysfunction in obesity. Approach and Results— Coronary arterioles (CAs, ≈90 µm) from right atrial appendages and mediastinal AT were examined in patients (aged: 69±11 years, BMI: 30.2±5.6 kg/m 2 ) who underwent open heart surgery. CA and AT were also studied in 6-month and 24-month lean and obese mice fed a normal or high-fat diet. We found that obesity elicited impaired endothelium-dependent CA dilations only in older patients and in aged high-fat diet mice. Transplantation of AT from aged obese, but not from young or aged, mice increased serum cytokine levels, including TNF, and impaired CA dilation in the young recipient mice. In patients and mice, obesity was accompanied by age-related activation of ADAM17, which was attributed to vascular endothelium–expressed ADAM17. Excess, ADAM17-shed TNF from AT arteries in older obese patients was sufficient to impair CA dilation in a bioassay in which the AT artery was serially connected to a CA. Moreover, we found that the increased activity of endothelial ADAM17 is mediated by a diminished inhibitory interaction with caveolin-1, owing to age-related decline in caveolin-1 expression in obese patients and mice or to genetic deletion of caveolin-1. Conclusions— The present study indicates that aging and obesity cooperatively reduce caveolin-1 expression and increase vascular endothelial ADAM17 activity and soluble TNF release in AT, which may contribute to the development of remote coronary microvascular dysfunction in older obese patients.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3