AMP-Activated Protein Kinase Suppresses Endothelial Cell Inflammation Through Phosphorylation of Transcriptional Coactivator p300

Author:

Zhang Yuan1,Qiu Jian1,Wang Xiaoming1,Zhang Yuhua1,Xia Min1

Affiliation:

1. From the Department of Cardiovascular Medicine, General Hospital of Guangzhou Military Command, Guangzhou, China (Yuan Zhang, J.Q., X.W., Yuhua Zhang, M.X.); Guangdong Provincial Key Laboratory of Food, Nutrition and Health (X.W., Yuhua Zhang, M.X.); Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China (X.W., Yuhua Zhang, M.X.).

Abstract

Objective— Considerable evidence supports the early involvement of monocyte/macrophage recruitment to activated endothelial cells by leukocyte adhesion molecules during atherogenesis. AMP-activated protein kinase (AMPK) is highly expressed in vascular endothelial cells, but its impact on monocyte adhesion and the related mechanisms are not fully understood. The present study was designed to evaluate the impact of and gain mechanistic insight into the signaling coupling AMPK function to the antiinflammatory response. Methods and Results— 5-Aminoimidazole-4-carboxamide-1-β- d -ribonucleotide (AICAR) treatment or overexpression of constitutively active AMPK markedly reduced human monocytic human acute monocytic leukemia cell line-1 cell adhesion and the expression of vascular cell adhesion molecule-1 in tumor necrosis factor-α–activated human aortic endothelial cells. Furthermore, AICAR or constitutively active AMPK overexpression strongly inhibited the histone acetyltransferase activity of the transcriptional coactivator p300 by phosphorylation of Ser89, which in turn decreased tumor necrosis factor-α-activated p300-mediated acetylation of nuclear factor-κB p65 on Lys221 and reduced the DNA binding activity of nuclear factor-κB by inhibiting its recruitment to its target gene promoters. AMPK phosphorylates the transcriptional coactivator p300 via the atypical protein kinase Cι/λ. Conclusion— Our findings demonstrate that transcriptional coactivator p300 phosphorylation at Ser89 by AMPK is critical for the therapeutic effect of AMPK and may be a potential target for pharmaceutical intervention in inflammatory diseases such as atherosclerosis.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

Cited by 104 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3