Reactive Oxygen Species Can Provide Atheroprotection via NOX4-Dependent Inhibition of Inflammation and Vascular Remodeling

Author:

Gray Stephen P.1,Di Marco Elyse1,Kennedy Kit1,Chew Phyllis1,Okabe Jun1,El-Osta Assam1,Calkin Anna C.1,Biessen Erik A.L.1,Touyz Rhian M.1,Cooper Mark E.1,Schmidt Harald H.H.W.1,Jandeleit-Dahm Karin A.M.1

Affiliation:

1. From the Diabetic Complications Laboratory (S.P.G., E.D.M., K.K., P.C., M.E.C., K.A.M.J.-D.), Epigenetics Laboratory (J.O., A.E.-O.), and Diabetes and Dyslipidaemia Group (A.C.C.), Baker IDI Heart and Diabetes Institute, Melbourne, Australia; Faculty of Medicine, Monash University, Melbourne, Australia (S.P.G., E.D.M., K.A.M.J.-D.); Department of Pathology, Maastricht University Medical Center, Maastricht, The Netherlands (E.A.L.B.); Institute of Cardiovascular and Medical Sciences, University of...

Abstract

Objective— Oxidative stress is considered a hallmark of atherosclerosis. In particular, the superoxide-generating type 1 NADPH oxidase (NOX1) has been shown to be induced and play a pivotal role in early phases of mouse models of atherosclerosis and in the context of diabetes mellitus. Here, we investigated the role of the most abundant type 4 isoform (NOX4) in human and mouse advanced atherosclerosis. Approach and Results— Plaques of patients with cardiovascular events or established diabetes mellitus showed a surprising reduction in expression of the most abundant but hydrogen peroxide (H 2 O 2 )-generating type 4 isoform (Nox4), whereas Nox1 mRNA was elevated, when compared with respective controls. As these data suggested that NOX4-derived reactive oxygen species may convey a surprisingly protective effect during plaque progression, we examined a mouse model of accelerated and advanced diabetic atherosclerosis, the streptozotocin-treated ApoE −/− mouse, with ( NOX4 −/− ) and without genetic deletion of Nox4. Similar to the human data, advanced versus early plaques of wild-type mice showed reduced Nox4 mRNA expression. Consistent with a rather protective role of NOX4-derived reactive oxygen species, NOX4 −/− mice showed increased atherosclerosis when compared with wild-type mice. Deleting NOX4 was associated with reduced H 2 O 2 forming activity and attenuation of the proinflammatory markers, monocyte chemotratic protein-1, interleukin-1β, and tumor necrosis factor-α, as well as vascular macrophage accumulation. Furthermore, there was a greater accumulation of fibrillar collagen fibres within the vascular wall and plaque in diabetic Nox4 −/− ApoE −/− mice, indicative of plaque remodeling. These data could be replicated in human aortic endothelial cells in vitro, where Nox4 overexpression increased H 2 O 2 and reduced the expression of pro-oxidants and profibrotic markers. Interestingly, Nox4 levels inversely correlated with Nox2 gene and protein levels. Although NOX2 is not constitutively active unlike NOX4 and forms rather superoxide, this opens up the possibility that at least some effects of NOX4 deletion are mediated by NOX2 activation. Conclusions— Thus, the appearance of reactive oxygen species in atherosclerosis is apparently not always a nondesirable oxidative stress, but can also have protective effects. Both in humans and in mouse, the H 2 O 2 -forming NOX4, unlike the superoxide-forming NOX1, can act as a negative modulator of inflammation and remodeling and convey atheroprotection. These results have implications on how to judge reactive oxygen species formation in cardiovascular disease and need to be considered in the development of NOX inhibitory drugs.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3