Regulation of Endothelial Cell Proliferation by Primary Monocytes

Author:

Schubert Shai Y.1,Benarroch Alejandro1,Ostvang Janne1,Edelman Elazer R.1

Affiliation:

1. From the Harvard-MIT Division of Health Sciences and Technology (S.Y.S., A.B., J.O., E.R.E.), Massachusetts Institute of Technology, Cambridge, Mass; IQS, Institut Químic de Sarrià (A.B.), Barcelona, Spain; and the Cardiovascular Division, Department of Medicine (E.R.E.), Brigham and Women’s Hospital, Harvard Medical School, Boston, Mass.

Abstract

Objective— Endothelial cell–monocyte cross talk is essential for vascular repair. Monocytes colocalize with endothelial cells forming a complex set of interactions distinct from the growth promoting cytokines secreted by differentiated macrophages. In the present work we examined the growth regulation and in vitro wound repair early after binding of monocytes to endothelial cells. Methods and Results— After direct contact with primary unactivated monocytes, endothelial cells enter S-phase through a mechanism mediated in part by contact-dependent activation of endothelial Met as demonstrated by siRNA silencing of Met, neutralizing antibodies for hepatocyte growth factor and Met as well as by specific inhibition of Met by the Met kinase inhibitor SU11274. Monocytes robustly promote endothelial cell proliferation and migration into a wounded endothelial monolayer. Monocyte-induced endothelial cell proliferation is accompanied by prolonged extracellular signal-regulated kinase (ERK) activation and is inhibited by the specific ERK inhibitor PD98059. The contact-mediated effect of monocytes is specific to endothelial cells and does not occur with vascular smooth muscle cells. Interestingly, although Flk1 is activated by monocytes, the proliferative effect of monocytes reported here is minimally mediated by Flk1 signaling. Conclusions— These results suggest that the early interaction between endothelial cells and monocytes is critical for the regulation of endothelial cell proliferation. This complex regulation is mediated in part by contact-dependent Met and ERK phosphorylation. These findings add to a broader set of leukocyte-endothelial contact mediated signals that together regulate endothelial function in health and disease.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3