5-Lipoxygenase Pathway in Experimental Abdominal Aortic Aneurysms

Author:

Bhamidipati Castigliano M.1,Whatling Carl A.1,Mehta Gaurav S.1,Meher Akshaya K.1,Hajzus Vanessa A.1,Su Gang1,Salmon Morgan1,Upchurch Gilbert R.1,Owens Gary K.1,Ailawadi Gorav1

Affiliation:

1. From the Division of Thoracic and Cardiovascular Surgery, Department of Surgery (C.M.B., A.K.M., V.A.H., G.A.), Department of Surgery (G.S.M.), Division of Vascular and Endovascular Surgery, Department of Surgery (G.S., G.R.U.), Department of Molecular Physiology and Biological Physics (M.S., G.K.O.), Department of Molecular Physiology and Biological Physics, Robert M. Berne Cardiovascular Research Center (G.R.U., G.K.O., G.A.), and Department of Biomedical Engineering (G.A.), University of Virginia...

Abstract

Objective— The impact of leukotriene production by the 5-lipoxygenase (5-LO) pathway in the pathophysiology of abdominal aortic aneurysms (AAAs) has been debated. Moreover, a clear mechanism through which 5-LO influences AAA remains unclear. Approach and Results— Aneurysm formation was attenuated in 5-LO –/– mice, and in lethally irradiated wild-type mice reconstituted with 5-LO –/– bone marrow in an elastase perfusion model. Pharmacological inhibition of 5-LO–attenuated aneurysm formation in both aortic elastase perfused wild-type and angiotensin II–treated LDLr –/– (low-density lipoprotein receptor) mice, with resultant preservation of elastin and fewer 5-LO and MMP9 (matrix metalloproteinase)-producing cells. Separately, analysis of wild-type mice 7 days after elastase perfusion showed that 5-LO inhibition was associated with reduced polymorphonuclear leukocyte infiltration to the aortic wall. Importantly, 5-LO inhibition initiated 3 days after elastase perfusion in wild-type mice arrested progression of small AAA. Human AAA and control aorta corroborated these elastin and 5-LO expression patterns. Conclusions— Inhibition of 5-LO by pharmacological or genetic approaches attenuates aneurysm formation and prevents fragmentation of the medial layer in 2 unique AAA models. Administration of 5-LO inhibitor in small AAA slows progression of AAA. Targeted interruption of the 5-LO pathway is a potential treatment strategy in AAA.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3