Deletion of BMAL1 in Smooth Muscle Cells Protects Mice From Abdominal Aortic Aneurysms

Author:

Lutshumba Jenny1,Liu Shu2,Zhong Yu1,Hou Tianfei,Daugherty Alan1,Lu Hong12,Guo Zhenheng23,Gong Ming C.1

Affiliation:

1. From the Department of Physiology (J.L., Y.Z., A.D., H.L., M.C.G.)

2. Department of Pharmacology and Nutritional Sciences (S.L., T.H., Z.G.), University of Kentucky, Lexington

3. Department of Research and Development, Lexington VA Medical Center, KY (Z.G.).

Abstract

Objective— Abdominal aortic aneurysm (AAA) has high mortality rate when ruptured, but currently, there is no proven pharmacological therapy for AAA because of our poor understanding of its pathogenesis. The current study explored a novel role of smooth muscle cell (SMC) BMAL1 (brain and muscle Arnt-like protein-1)—a transcription factor known to regulate circadian rhythm—in AAA development. Approach and Results— SMC-selective deletion of BMAL1 potently protected mice from AAA induced by (1) MR (mineralocorticoid receptor) agonist deoxycorticosterone acetate or aldosterone plus high salt intake and (2) angiotensin II infusion in hypercholesterolemia mice. Aortic BMAL1 was upregulated by deoxycorticosterone acetate-salt, and deletion of BMAL1 in SMCs selectively upregulated TIMP4 (tissue inhibitor of metalloproteinase 4) and suppressed deoxycorticosterone acetate-salt–induced MMP (matrix metalloproteinase) activation and elastin breakages. Moreover, BMAL1 bound to the Timp4 promoter and suppressed Timp4 transcription. Conclusions— These results reveal an important, but previously unexplored, role of SMC BMAL1 in AAA. Moreover, these results identify TIMP4 as a novel target of BMAL1, which may mediate the AAA protective effect of SMC BMAL1 deletion.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3