Serum-Glucocorticoid Regulated Kinase 1 Regulates Alternatively Activated Macrophage Polarization Contributing to Angiotensin II–Induced Inflammation and Cardiac Fibrosis

Author:

Yang Min1,Zheng Jiao1,Miao Yanjv1,Wang Ying1,Cui Wei1,Guo Jun1,Qiu Shulan1,Han Yalei1,Jia Lixin1,Li Huihua1,Cheng Jizhong1,Du Jie1

Affiliation:

1. From the Beijing Anzhen Hospital Affiliated to the Capital Medical University (M.Y., J.Z., Y.M., Y.W., W.C., J.G., S.Q., Y.H., L.J., J.C., J.D.); The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Capital Medical University, Ministry of Education, Beijing Institute of Heart, Lung, and Blood Vessel Diseases (M.Y., J.Z., Y.M., Y.W., W.C., J.G., S.Q., Y.H., L.J., J.C., J.D.); and Department of Pathology, School of Basic Medical Sciences, Capital Medical University, Beijing, China (H.L.).

Abstract

Objective— Inflammatory responses play a pivotal role in the pathogenesis of hypertensive cardiac remodeling. Macrophage recruitment and polarization contribute to the development of cardiac fibrosis. Although serum-glucocorticoid regulated kinase 1 (SGK1) is a key mediator of fibrosis, its role in regulating macrophage function leading to cardiac fibrosis has not been investigated. We aimed to determine the mechanism by which SGK1 regulates the cardiac inflammatory process, thus contributing to hypertensive cardiac fibrosis. Methods and Results— After angiotensin II infusion in mice, cardiac hypertrophy and fibrosis developed in wild-type but not SGK1 knockout mice, with equal levels of hypertension in both groups. Compared with wild-type hearts, SGK1 knockout hearts showed less infiltration of leukocytes and macrophages. Importantly, SGK1 deficiency led to decreased proportion of alternatively activated (M2) macrophages and increased levels of profibrotic cytokines. Angiotensin II infusion induced phosphorylation and nuclear localization of signal transducer and activator of transcription 3 (STAT3) whereas SGK1 knockout hearts showed this effect attenuated. In a 3-dimensional peptide gel culture, inhibition of STAT3 suppressed differentiation into M2 macrophages. Coculture of macrophages with cardiac fibroblasts in 3-dimensional peptide gel stimulated the expression of α-smooth muscle actin and collagen in cardiac fibroblasts. However, SGK1 knockout mice with macrophage deficiency showed reduced fibroblast-to-myofibroblast transition. Conclusion— SGK1 may play an important role in macrophage recruitment and M2 macrophage activation by activating the STAT3 pathway, which leads to angiotensin II–induced cardiac fibrosis.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3