NADPH Oxidase–Generated Reactive Oxygen Species Are Required for Stromal Cell–Derived Factor-1α–Stimulated Angiogenesis

Author:

Pi Xinchun1,Xie Liang1,Portbury Andrea L.1,Kumar Sarayu1,Lockyer Pamela1,Li Xi1,Patterson Cam1

Affiliation:

1. From the UNC McAllister Heart Institute (X.P., L.X., A.L.P., P.L., X.L., C.P.), Department of Medicine (X.P., L.X., A.L.P., P.L., X.L., C.P.), and Department of Chemistry (S.K.), University of North Carolina, Chapel Hill.

Abstract

Objective— Reactive oxygen species (ROS) act as signaling molecules during angiogenesis; however, the mechanisms used for such signaling events remain unclear. Stromal cell–derived factor-1α (SDF-1α) is one of the most potent angiogenic chemokines. Here, we examined the role of ROS in the regulation of SDF-1α–dependent angiogenesis. Approach and Results— Bovine aortic endothelial cells were treated with SDF-1α, and intracellular ROS generation was monitored. SDF-1α treatment induced bovine aortic endothelial cell migration and ROS generation, with the majority of ROS generated by bovine aortic endothelial cells at the leading edge of the migratory cells. Antioxidants and nicotinamide adenine dinucleotide phosphate oxidase (NOX) inhibitors blocked SDF-1α–induced endothelial migration. Furthermore, knockdown of either NOX5 or p22phox (a requisite subunit for NOX1/2/4 activation) significantly impaired endothelial motility and tube formation, suggesting that multiple NOXs regulate SDF-1α–dependent angiogenesis. Our previous study demonstrated that c-Jun N-terminal kinase 3 activity is essential for SDF-1α–dependent angiogenesis. Here, we identified that NOX5 is the dominant NOX required for SDF-1α–induced c-Jun N-terminal kinase 3 activation and that NOX5 and MAP kinase phosphatase 7 (MKP7; the c-Jun N-terminal kinase 3 phosphatase) associate with one another but decrease this interaction on SDF-1α treatment. Furthermore, MKP7 activity was inhibited by SDF-1α, and this inhibition was relieved by NOX5 knockdown, indicating that NOX5 promotes c-Jun N-terminal kinase 3 activation by blocking MKP7 activity. Conclusions— We conclude that NOX is required for SDF-1α signaling and that intracellular redox balance is critical for SDF-1α–induced endothelial migration and angiogenesis.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3