Comparative Genome-Wide Association Studies in Mice and Humans for Trimethylamine N -Oxide, a Proatherogenic Metabolite of Choline and l -Carnitine

Author:

Hartiala Jaana,Bennett Brian J.,Tang W.H. Wilson,Wang Zeneng,Stewart Alexandre F.R.,Roberts Robert,McPherson Ruth,Lusis Aldons J.1,Hazen Stanley L.1,Allayee Hooman1

Affiliation:

1. From the Department of Preventive Medicine (J.H., H.A.) and Institute for Genetic Medicine (J.H., H.A.), Keck School of Medicine of the University of Southern California, Los Angeles; Department of Genetics (B.J.B.) and Nutrition Research Institute (B.J.B.), University of North Carolina, Chapel Hill, Kannapolis; Departments of Cardiovascular Medicine (W.H.W.T., Z.W., S.L.H.) and Cellular and Molecular Medicine (W.H.W.T., Z.W., S.L.H.) and Center for Cardiovascular Diagnostics and Prevention (W.H.W.T...

Abstract

Objective— Elevated levels of plasma trimethylamine N -oxide (TMAO), the product of gut microbiome and hepatic-mediated metabolism of dietary choline and l -carnitine, have recently been identified as a novel risk factor for the development of atherosclerosis in mice and humans. The goal of this study was to identify the genetic factors associated with plasma TMAO levels. Approach and Results— We used comparative genome-wide association study approaches to discover loci for plasma TMAO levels in mice and humans. A genome-wide association study in the hybrid mouse diversity panel identified a locus for TMAO levels on chromosome 3 ( P =2.37×10 −6 ) that colocalized with a highly significant ( P =1.07×10 −20 ) cis -expression quantitative trait locus for solute carrier family 30 member 7. This zinc transporter could thus represent 1 positional candidate gene responsible for the association signal at this locus in mice. A genome-wide association study for plasma TMAO levels in 1973 humans identified 2 loci with suggestive evidence of association ( P =3.0×10 −7 ) on chromosomes 1q23.3 and 2p12. However, genotyping of the lead variants at these loci in 1892 additional subjects failed to replicate their association with plasma TMAO levels. Conclusions— The results of these limited observational studies indicate that, at least in humans, genes play a marginal role in determining TMAO levels and that any genetic effects are relatively weak and complex. Variation in diet or the repertoire of gut microbiota may be more important determinants of plasma TMAO levels in mice and humans, which should be investigated in future studies.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

Cited by 124 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3