Pioglitazone Enhances Cytokine-Induced Apoptosis in Vascular Smooth Muscle Cells and Reduces Intimal Hyperplasia

Author:

Aizawa Yoshiaki1,Kawabe Jun-ichi1,Hasebe Naoyuki1,Takehara Naohumi1,Kikuchi Kenjiro1

Affiliation:

1. From the Department of Medicine, Asahikawa Medical College, Asahikawa, Japan.

Abstract

Background Cytokines induce apoptosis in vascular disease lesions through enhancement of inducible nitric oxide (NO) synthase (iNOS) activation. The thiazolidinediones, novel insulin-sensitizing agents, have been demonstrated to modulate cytokine-induced NO production. We have investigated the role of pioglitazone in the apoptosis of vascular smooth muscle cells (VSMCs) in vitro and developed intimal hyperplasia in vivo. Methods and Results Pioglitazone (0.1 to 10 μmol/L) significantly enhanced cytokine-induced expression of iNOS and NO production in a dose-dependent manner in rat VSMCs, but 15-deoxy-Δ 12,14 -prostaglandin J2 (up to 10 μmol/L), a native peroxisome proliferator-activated receptor-γ ligand, showed no effect. Pioglitazone also significantly enhanced reduction of cell viability, as evidenced by the increase in the number of TUNEL-positive cells. All of these effects of pioglitazone were blocked by treatment with N -monomethyl- l -arginine, an NO synthesis inhibitor. In an in vivo study with a balloon-injured rat carotid artery, neointimal thickness had reached maximum levels at 2 weeks after injury. Then, rats were fed with or without pioglitazone (3 mg · kg −1 · d −1 ) for an additional week. The ratio of intima to media area of carotid artery was significantly decreased by 30%, and the ratio of apoptotic cells in neointima was significantly increased in pioglitazone-treated rats compared with vehicle-treated control rats. Conclusions Pioglitazone enhanced apoptosis in an NO-dependent manner in cytokine-activated VSMCs and induced significant regression of intimal hyperplasia in balloon-injured rat carotid artery. It appears that pioglitazone is a potent apoptosis inducer in vascular lesions, providing a novel pharmacological strategy to prevent restenosis after vascular intervention.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3