Arch and Great Vessel Geometry From a Transradial Angiographic Approach

Author:

Zerebiec Katherine W.1ORCID,Heidari Parisa1,D'Agostino Erin1,Soares Bruno P.1,Johnson David M.1,Raymond Scott B.1

Affiliation:

1. Larner College of Medicine, University of Vermont and University of Vermont Medical Center Burlington VT

Abstract

Background Neuroendovascular practices are transitioning from transfemoral to a radial‐first approach for cerebral angiography. Developing radial‐specific devices requires a comprehensive understanding of vessel size and geometry encountered from a right radial approach. We developed a database of aortic arch and vessel measurements relevant for radial‐specific device development. Methods The database contained 100 consecutive neck computed tomographic angiograms conducted on a 256‐slice emergency department computed tomographic scanner. Arch characteristics and measurements obtained from 1‐cm maximum intensity projection reformats included arch type and diameter, bifurcation angles, and distances from the arch to vessel origins. Statistical analysis was conducted using Excel and R. Results The database contained 56 female and 44 male patients; the average age was 62 years. A total of 46% had type 2 or 3 arch configuration, 19% had bovine configuration, and 5% had a left vertebral artery originating directly from the arch. Median angles at the arch from the innominate ranged from 20° to 47° and at branch vessels from 16° to 63° with large variation. The left carotid bifurcation was ≈8 cm further than the right carotid bifurcation. The left vertebral artery origin was median 3.8 cm from the arch. Conclusions We cataloged aortic arch and vessel geometries that have implications for catheter and device performance from a transradial approach. For example, a standard guide catheter that is adequate length for the right anterior circulation must be at least 8 cm longer for comparable distal support on the left because of the difference in distance from the right to the left. Catheter tip shape may be further optimized to improve vessel selection. Currently used catheters make a reverse curve angle of ≈15°, although most great vessels are at between 15° and 45°. Finally, the length of the distal arm of reverse curve catheters is just >4 cm, frequently inadequate to easily reach the left vertebral artery origin (median distance, 3.8 cm in this study). Transradial devices should be developed with these constraints in mind. This database provides benchmarks for future catheter design.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3