The Cholinergic Pathway and MitoK ATP Induce UCP4 Expression Involved in Neuroprotection of FN Stimulation in Rats

Author:

Fukushi Yasuko1,Golanov Eugene V.2,Koizumi Shinichiro3,Thura Min14,Ihara Hayato56,Yamamoto Seiji1ORCID

Affiliation:

1. Department of Innovative Medical Photonics Preeminent Medical Photonics Education & Research Center Hamamatsu University School of Medicine Hamamatsu Japan

2. Department of Neurosurgery Houston Methodist Hospital Houston TX

3. Department of Neurosurgery Hamamatsu University School of Medicine Hamamatsu Japan

4. Institute of Molecular and Cell Biology Agency for Science Technology and Research Singapore Singapore

5. Department of Physiology Hamamatsu University School of Medicine Hamamatsu Japan

6. Radioisotope Laboratory Center Wakayama Medical University Wakayama Japan

Abstract

Background Electrical stimulation of the cerebellar fastigial nucleus (FN) reduces the infarct size induced by middle cerebral artery occlusion in rats. FN stimulation confers long‐lasting protection from brain injury; however, its underlying mechanism is not yet understood. We aimed to elucidate the mechanism by which FN stimulation exerts neuroprotection. We hypothesized that the neuroprotective effect of FN stimulation involves activation of cholinergic pathways, which increases reactive oxygen species (ROS) production by opening mitochondrial K + ATP channels, thus leading to an increase in UCP4 (uncoupling protein 4) expression and subsequent neuroprotection. Methods FN stimulation was performed for 1 hour in rats. The UCP4 protein and mRNA levels were measured by western blot, dot blot, and in situ hybridization. Carbachol was applied following UCP4‐promoter tdTomato reporter vector transfection of the rat primary cortical cell culture (in vitro) and rat brain (in vivo). We observed cellular UCP4 expression using fluorescence microscopy. UCP4 expression in the cell culture in response to diazoxide application was determined by a reverse transcription‐polymerase chain reaction and western blotting. Results Whereas FN stimulation increased UCP4 protein and mRNA levels, carbachol administration induced UCP4 expression in vitro and in vivo. The attenuation of this effect by atropine suggests that FN‐induced UCP4 expression involves the cholinergic pathway. The opening of mitochondrial K + ATP channels with diazoxide increased the production of ROS and led to increased UCP4 expression. In contrast, quenching ROS with superoxide dismutase reversed the effect of diazoxide on UCP4 expression. Therefore, the opening of mitochondrial K + ATP channels increased ROS production, which subsequently enhanced UCP4 expression and attenuated ROS generation. Conclusion Neuroprotective effect of FN stimulation involves activation of the cholinergic pathways, which increases ROS production by opening mitochondrial K + ATP channels, leading to increased expression of neuroprotective UCP4.

Publisher

Ovid Technologies (Wolters Kluwer Health)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3