Dependence of Gorlin formula and continuity equation valve areas on transvalvular volume flow rate in valvular aortic stenosis.

Author:

Burwash I G1,Thomas D D1,Sadahiro M1,Pearlman A S1,Verrier E D1,Thomas R1,Kraft C D1,Otto C M1

Affiliation:

1. Department of Medicine, University of Washington, Seattle 98195.

Abstract

BACKGROUND Valve areas derived by the Gorlin formula have been observed to vary with transvalvular volume flow rate. Continuity equation valve areas calculated from Doppler-echo data have become a widely used alternate index of stenosis severity, but it is unclear whether continuity equation valve areas also vary with volume flow rate. This study was designed to investigate the effects of changing transvalvular volume flow rate on aortic valve areas calculated using both the Gorlin formula and the continuity equation in a model of chronic valvular aortic stenosis. METHODS AND RESULTS Using a canine model of chronic valvular aortic stenosis in which anatomy and hemodynamics are similar to those of degenerative aortic stenosis, each subject (n = 8) underwent three studies at 2-week intervals. In each study, transvalvular volume flow rates were altered with saline or dobutamine infusion (mean, 10.3 +/- 5.1 flow rates per study). Simultaneous measurements were made of hemodynamics using micromanometer-tipped catheters, of ascending aortic instantaneous volume flow rate using a transit-time flowmeter, and of left ventricular outflow and aortic jet velocity curves using Doppler echocardiography. Valve areas were calculated from the invasive data by the Gorlin equation and from the Doppler-echo data by the continuity equation. In the 24 studies, mean transit-time transvalvular volume flow rate ranged from 80 +/- 33 to 153 +/- 49 mL/min (P < .0001). Comparing minimum to maximum mean volume flow rates, the Gorlin valve area changed from 0.54 +/- 0.22 cm2 to 0.68 +/- 0.21 cm2 (P < .0001), and the continuity equation valve area changed from 0.57 +/- 0.18 cm2 to 0.70 +/- 0.20 cm2 (P < .0001). A strong linear relation was observed between Gorlin valve area and mean transit-time volume flow rate for each study (median, r = .88), but the slope of this relation varied between studies. The Doppler-echo continuity equation valve area had a weaker linear relation with transit-time volume flow rate for each study (median, r = .51). CONCLUSIONS In this model of chronic valvular aortic stenosis, both Gorlin and continuity equation valve areas were flow-dependent indices of stenosis severity and demonstrated linear relations with transvalvular volume flow rate. The changes in calculated valve area that occur with changes in transvalvular volume flow should be considered when measures of valve area are used to assess the hemodynamic severity of valvular aortic stenosis.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3