Effects of adenosine on rate-dependent atrioventricular nodal function. Potential roles in tachycardia termination and physiological regulation.

Author:

Nayebpour M1,Billette J1,Amellal F1,Nattel S1

Affiliation:

1. Department of Physiology, University of Montreal, Quebec, Canada.

Abstract

BACKGROUND Adenosine is well known to depress atrioventricular (AV) nodal conduction, but the potential interactions between adenosine and functional AV nodal properties have not been explored. The purpose of the present study was to determine (1) whether exogenous adenosine modifies the rate-dependent properties of the AV node, (2) to what extent such changes underlie the actions of adenosine in an in vitro model of AV reentrant tachycardia (AVRT), and (3) the potential role of endogenous adenosine in rate-induced AV nodal responses. METHODS AND RESULTS The functional properties of AV nodal recovery (defining the conduction delay of a single premature activation), facilitation (effect of short cycles on subsequent nodal recovery), and fatigue (slowly developing AV nodal delay at a rapid rate) were studied selectively in isolated, superfused rabbit and guinea pig cardiac preparations. Exogenous adenosine increased AV nodal fatigue and attenuated facilitation, resulting in tachycardia-dependent increases in AH interval and AV nodal effective refractory period (AVERP). In experimental AVRT, adenosine caused greater increases in tachycardia cycle length (T) and AVERP as tachycardia rate increased. AVRT was sustained when AVERP/T was < 1, and adenosine suppressed AVRT by increasing the slope of the AVERP/T versus tachycardia rate relation, causing the critical ratio of 1 to be attained at slower rates. A mathematical model incorporating quantitative descriptors of recovery, facilitation, and fatigue accounted for changes in AH interval, AVERP, tachycardia cycle length, and AVERP/T under control conditions and in the presence of adenosine. In the absence of exogenous adenosine, 8-phenyltheophylline (10 mumol/L), an adenosine receptor antagonist, did not alter recovery or facilitation but significantly reduced rate-related fatigue (by 31 +/- 8%, mean +/- SEM, P < .05, in rabbit hearts; 46 +/- 5%, P < .01, in guinea pig hearts). Combined inhibition of adenosine deaminase (with erythro-9-[2-hydroxy-3-nonyl]-adenine hydrochloride, 5 mumol/L) and adenosine uptake (with dipyridamole, 1 mumol/L) increased fatigue in the absence of exogenous adenosine by 57 +/- 20% (P < .05). CONCLUSIONS We conclude that (1) exogenously administered adenosine increases AV nodal fatigue and reduces facilitation, without altering AV nodal recovery; (2) these changes cause rate-dependent AV nodal depression, which plays a role in adenosine's actions on experimental AVRT; and (3) endogenous adenosine receptor activation plays a role in physiological AV nodal fatigue. Adenosine's ability to terminate reentrant supraventricular tachycardia may be due, at least in part, to its ability to enhance the physiological conduction slowing that results from sustained increases in AV nodal activation rate.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3