Quantification of jet flow by momentum analysis. An in vitro color Doppler flow study.

Author:

Thomas J D1,Liu C M1,Flachskampf F A1,O'Shea J P1,Davidoff R1,Weyman A E1

Affiliation:

1. Noninvasive Cardiac Laboratory, Massachusetts General Hospital, Boston 02114.

Abstract

Previous investigations have shown that the size of a regurgitant jet as assessed by color Doppler flow mapping is independently affected by the flow rate and velocity (or driving pressure) of the jet. Fluid dynamics theory predicts that jet momentum (given by the orifice flow rate multiplied by velocity) should best predict the appearance of the jet in the receiving chamber and also that this momentum should remain constant throughout the jet. To test this hypothesis, we measured jet area versus driving pressure, flow rate, velocity, orifice area, and momentum and showed that momentum is the optimal jet parameter: jet area = 1.25 (momentum).28, r = 0.989, p less than 0.0001. However, the very curvilinear nature of this function indicated that chamber constraint strongly affected jet area, which limited the ability to predict jet momentum from observed jet area. To circumvent this limitation, we analyzed the velocities per se within the Doppler flow map. For jets formed by 1-81-mm Hg driving pressure through 0.005-0.5-cm2 orifices, the velocity distribution confirmed the fluid dynamic prediction: Gaussian (bell-shaped) profiles across the jet at each level with the centerline velocity decaying inversely with distance from the orifice. Furthermore, momentum was calculated directly from the flow maps, which was relatively constant within the jet and in good agreement with the known jet momentum at the orifice (r = 0.99). Finally, the measured momentum was divided by orifice velocity to yield an accurate estimate of the orifice flow rate (r = 0.99). Momentum was also divided by the square of velocity to yield effective orifice area (r = 0.84). We conclude that momentum is the single jet parameter that best predicts the color area displayed by Doppler flow mapping. Momentum can be measured directly from the velocities within the flow map, and when combined with orifice velocity, momentum provides an accurate estimate of flow rate and orifice area.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3