Epicardial potential mapping. Effects of conducting media on isopotential and isochrone distributions.

Author:

Green L S1,Taccardi B1,Ershler P R1,Lux R L1

Affiliation:

1. Nora Eccles Harrison Cardiovascular Research, University of Utah, Salt Lake City 84112.

Abstract

BACKGROUND Epicardial excitation sequences, recovery sequences, and potential distributions are recorded from patients during surgery and from animals in the research laboratory for a variety of purposes. During such recordings, a portion of the cardiac surface is exposed to air, and the remainder of the epicardial surface variably is in contact with conductive tissue. No systematic studies document the degree to which these different conditions affect measured excitation times, potential distributions, and/or the configuration of epicardial electrograms. METHODS AND RESULTS Epicardial potential distribution was recorded from five isolated, perfused hearts using a 64-unipolar-lead sock. Data were recorded first with the heart suspended in air and then with the heart immersed in a heated tank filled sequentially to full and half-full levels with conductive Tyrode's solution and then NaCl-sucrose solution. These solutions had resistivity less than and more than that of blood, respectively, and air was assumed to have infinite resistivity. Epicardial potentials were recorded from two hearts before removal from the chest, both with and without a latex sheet insulating the heart from the pericardial cradle. Amplitude of recorded potentials from both intact and isolated hearts was markedly higher when the heart was surrounded by an insulating medium, but locations of positive and negative regions were less affected by surrounding medium. Isochrone activation maps calculated using the minimum derivative of the QRS (intrinsic deflection) were not affected by the conductivity of media surrounding the heart. CONCLUSIONS The present study provides evidence that isochrone maps recorded at surgery are not distorted by exposure of the cardiac surface to insulating air. Results suggest that epicardial isochrones recorded during cardiac surgery could be used in patients to assess the accuracy of "inverse" procedures that noninvasively compute epicardial electrograms and isochrones from body surface potentials.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. PDE-Aware Deep Learning for Inverse Problems in Cardiac Electrophysiology;SIAM Journal on Scientific Computing;2022-06

2. Fundamentals of Intracardiac Mapping;Catheter Ablation of Cardiac Arrhythmias;2019

3. The study of the influence of heart ventricular wall thickness on pseudo-ECG;Russian Journal of Numerical Analysis and Mathematical Modelling;2018-11-27

4. Torso-Tank Validation of High-Resolution Electrogastrography (EGG): Forward Modelling, Methodology and Results;Annals of Biomedical Engineering;2018-04-27

5. The Inverse Problem of Electrocardiography;Basic Electrocardiology;2011-09-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3