Cardiac noradrenergic nerve terminal abnormalities in dogs with experimental congestive heart failure.

Author:

Himura Y1,Felten S Y1,Kashiki M1,Lewandowski T J1,Delehanty J M1,Liang C S1

Affiliation:

1. Department of Medicine (Cardiology Unit), University of Rochester Medical Center, NY 14642.

Abstract

BACKGROUND We have shown previously that norepinephrine (NE) uptake activity is reduced in the failing right ventricle of animals with right heart failure (RHF) produced by tricuspid avulsion and progressive pulmonary constriction. However, it is unknown whether this defect in neuronal NE uptake is related to reduction of noradrenergic nerve terminals or whether these changes also occur in animals with left heart failure (LHF). It is also unknown whether increased NE release in heart failure contributes to the noradrenergic nerve abnormalities. METHODS AND RESULTS We measured myocardial NE content. NE uptake function, and noradrenergic nerve profiles in dogs with either RHF or LHF induced by rapid ventricular pacing. NE uptake activity was measured using [3H]NE, and noradrenergic nerve profiles were visualized by glyoxylic acid (SPG)-induced histofluorescence and tyrosine hydroxylase immunocytochemical staining. To study the effects of excess NE, we exposed normal dogs to 8 weeks of chronic NE infusion using subcutaneous osmotic minipumps. RHF and LHF animals exhibited reduced myocardial contractile function and congestive heart failure, as evidence by reduced cardiac output and elevated right atrial pressure. However, unlike that in LHF, left atrial pressure was not increased in RHF. The animals also showed an increase in plasma NE and a decrease in cardiac NE. In addition, SPG-induced histofluorescence correlated significantly with NE uptake activity (r = .712, P < .001) and tyrosine hydroxylase immunoreactive profiles (r = .569, P < .001) in the right ventricles of RHF dogs and in both ventricles of LHF dogs. The numbers of catecholaminergic profiles and tyrosine hydroxylase profiles significantly correlated with cardiac filling pressures. Chronic infusion of NE decreased heart rate in normal dogs but had no effect on either mean aortic pressure or left atrial pressure; like heart failure, it resulted in significant decreases in myocardial NE uptake activity and numbers of SPG-induced catecholaminergic histofluorescence and immunoreactive tyrosine hydroxylase profiles. CONCLUSIONS Myocardial NE uptake activity was reduced only in the failing ventricles with elevated filling pressure in RHF and LHF. These changes probably were caused by loss of noradrenergic nerve terminals in the failing ventricles, as evidenced by the reductions of catecholaminergic histofluorescence and tyrosine hydroxylase immunostained profiles. Furthermore, since similar reductions of myocardial NE uptake and noradrenergic nerve profiles could be produced by chronic NE infusion in normal dogs, elevated NE levels may play a role in the development of cardiac noradrenergic nerve abnormalities in congestive heart failure.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3