Induction of ventricular fibrillation versus monomorphic ventricular tachycardia during programmed stimulation. Role of premature beat conduction delay.

Author:

Avitall B1,McKinnie J1,Jazayeri M1,Akhtar M1,Anderson A J1,Tchou P1

Affiliation:

1. Electrophysiology Laboratory, University of Wisconsin-Milwaukee Clinical Campus, Sinai Samaritan Medical Center 53201.

Abstract

BACKGROUND Premature stimuli can cause ventricular fibrillation (VF) during electrophysiological testing. The electrophysiological correlations associated with the onset of VF were evaluated in 40 patients who had this rhythm induced during programmed ventricular stimulation. These parameters were compared with those observed in 51 patients who had inducible sustained monomorphic ventricular tachycardia (VT) and 45 patients who had no inducible sustained ventricular tachyarrhythmias. METHODS AND RESULTS Shortest premature coupling intervals for S2, S3, and S4 at induction of tachycardia or before achieving refractoriness, corresponding conduction latencies (defined as the time from the premature stimulus to the upstroke of the depolarization wave front recorded 35 mm away from the stimulation site), and ventricular activation times (defined as the time from the premature stimulus to the end of the depolarization wave) were compared. The mean coupling intervals were longest in the inducible VT patients: 300 +/- 30, 254 +/- 57, and 228 +/- 32 msec for S2, S3, and S4, respectively. In the inducible VF group, the coupling intervals were 260 +/- 37, 208 +/- 20, and 213 +/- 30 msec. In the group with no inducible VT or VF, these coupling intervals were 251 +/- 24 (p less than 0.01 versus inducible VT group), 209 +/- 27 (p less than 0.001 versus inducible VT group), and 194 +/- 21 msec (p less than 0.05 versus inducible VT and VF groups). The coupling interval of the last premature extrastimulus was above 200 msec in 70% of the patients in whom VF was induced. The largest increases in latency and activation times were recorded in patients in whom VF was induced. The cumulative increase in latency, defined as increased conduction time from baseline, summed for all the premature stimuli was also the greatest at initiation of VF. In contrast, the smallest increases in these parameters were noted in the patients with no inducible VT or VF. Measurements of total activation time yielded similar results as those recorded for latencies. The most important parameters distinguishing the VT patient population from the other two groups were the low ejection fractions and the longer coupling intervals at which VT was induced, whereas in the VF group, the most important discriminating factor was cumulative activation time. Sixty-three percent of the inducible VF patients presented with abnormal hearts (myocardial infarction or cardiomyopathy), whereas 88% of the inducible VT patients had abnormal hearts. In contrast, only 25% of the patients in whom no arrhythmia was induced presented with abnormal hearts. Mean ejection fraction was 32 +/- 15% for the inducible VT group, 45 +/- 13%* for the inducible VF group, and 51 +/- 17%* for patients with no inducible VT/VF (*p less than 0.001 versus VT). CONCLUSIONS The results suggest that 1) initiation of ventricular tachycardia during programmed ventricular stimulation occurs with minimal conduction latency; 2) because of the large overlap in coupling intervals where VF or VT were induced, a single coupling interval cannot be recommended to adequately separate these groups; and 3) induction of VF was preceded by increased latency and prolongation of the local activation time. These parameters should not be allowed to prolong if VF is to be avoided during programmed stimulation. In addition, 4) the initiation of VF during electrophysiological studies is often associated with the presence of structural heart disease; such structural disease may promote conduction latency and the development of VF.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3