Left ventricular diastolic chamber stiffness and intramyocardial coronary capacitance in isolated dog hearts.

Author:

Watanabe J1,Levine M J1,Bellotto F1,Johnson R G1,Grossman W1

Affiliation:

1. Charles A. Dana Research Institute, Boston, MA.

Abstract

BACKGROUND Because the myocardium is perfused primarily during diastole, changes in diastolic properties of the left ventricle (LV) should influence the intramyocardial circulation. METHODS AND RESULTS We examined the influence of LV diastolic properties on the magnitude and localization of intramyocardial coronary capacitance by analyzing the coronary pressure-venous flow relation in isolated, isovolumic dog heart preparations. After sudden occlusion of the left coronary artery during a long diastole, we measured precapacitance and postcapacitance resistances (RPRE and RPOST) and calculated intramyocardial coronary capacitance (CIM) from RPOST and the time constant of the coronary venous flow decay. Using this method, we characterized the effects of coronary vasodilation, LV diastolic volume, and LV diastolic chamber stiffness on the coronary circulation. The magnitude of CIM increased from 0.09 +/- 0.01 to 0.24 +/- 0.20 mL.mm Hg-1 x 100 g-1 (P < .01) after adenosine-induced vasodilation, whereas both RPOST and RPRE decreased significantly. The ratio of RPOST to RPRE+RPOST decreased from 0.35 +/- 0.02 to 0.23 +/- 0.02 (P < .01), suggesting redistribution of CIM to the distal portion of the coronary vascular tree. An increase in LV volume and wall stress was imposed to increase LV diastolic pressure from 2 +/- 0.1 to 25 +/- 1 mm Hg: this increased RPOST significantly but not RPRE and decreased the magnitude of CIM. The resistance ratio did not change significantly. Increased LV diastolic chamber stiffness induced by hypoxic perfusion (isovolumic LV diastolic pressure increased from 11 +/- 1 to 28 +/- 1 mm Hg) raised RPOST and decreased the magnitude of CIM from 0.32 +/- 0.12 to 0.17 +/- 0.04 mL.mm Hg-1 x 100 g-1 (P < .05). The resistance ratio increased significantly from 0.21 +/- 0.05 to 0.33 +/- 0.05 with increased LV diastolic chamber stiffness. Adjustment of LV diastolic volume to lower diastolic pressure to 10 +/- 1 mm Hg did not alter these changes significantly, suggesting that an intrinsic increase in myocardial stiffness played a major role in these changes. CONCLUSIONS Extravascular compression by raised LV diastolic volume and/or increased LV diastolic chamber stiffness acted mainly on coronary vessels that determine intramyocardial capacitance and postcapacitance resistance.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

Reference34 articles.

1. Pulsatile aspects of coronary sinus blood flow in closed-chest dogs

2. Evaluation of phasic blood flow velocity in the great cardiac vein by a laser Doppler method

3. Coronary venous outflow persists after cessation of coronary arterial inflow;Chilian WM;Am J Physiol.,1984

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3